@article{TVP_2010_55_1_a7,
author = {P. Babilua and I. Bokuchava and B. Dochviri},
title = {The optimal stopping problem for the {Kalman{\textendash}Bucy} scheme},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {133--142},
year = {2010},
volume = {55},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a7/}
}
P. Babilua; I. Bokuchava; B. Dochviri. The optimal stopping problem for the Kalman–Bucy scheme. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a7/
[1] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl
[2] Shiryaev A. N., Statisticheskii posledovatelnyi analiz: Optimalnye pravila ostanovki, Nauka, M., 1969, 231 pp.
[3] Dochviri V. M., “On optimal stopping with incompete data”, Lecture Notes in Math., 1299, 1988, 64–68 | MR | Zbl
[4] Babilua P., Bokuchava I., Dochviri B., Shashiashvili M., “Convergence of costs in an optimal stopping problem for a partially observable model”, Appl. Math. Inform. Mech., 11:1 (2006), 6–11 http://www.viam.science.tsu.ge/Ami/Main | MR | Zbl
[5] Dochviri V., Shashiashvili M., “Ob optimalnoi ostanovke odnorodnogo markovskogo protsessa na konechnom intervale vremeni”, Math. Nachr., 156 (1992), 269–281 | MR | Zbl
[6] Shepp L. A., “Explicit solutions to some problems of optimal stopping”, Ann. Math. Statist., 40 (1969), 993–1010 | DOI | MR | Zbl
[7] Fermann Kh., “Ob optimalnoi ostanovke vinerovskogo protsessa po nepolnym dannym”, Teoriya veroyatn. i ee primen., 23:1 (1978), 143–148 | MR