@article{TVP_2010_55_1_a4,
author = {M. Bianchi and S. T. Rachev and Y. S. Kim and F. J. Fabozzi},
title = {Tempered infinitely divisible distributions and processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {59--86},
year = {2010},
volume = {55},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/}
}
TY - JOUR AU - M. Bianchi AU - S. T. Rachev AU - Y. S. Kim AU - F. J. Fabozzi TI - Tempered infinitely divisible distributions and processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2010 SP - 59 EP - 86 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/ LA - en ID - TVP_2010_55_1_a4 ER -
M. Bianchi; S. T. Rachev; Y. S. Kim; F. J. Fabozzi. Tempered infinitely divisible distributions and processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 59-86. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/
[1] Abramovits M., Stigan M., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 830 pp. | MR
[2] Bianchi M. L., Rachev S. T., Kim Y. S., Fabozzi F. J., Tempered infinitely divisible distributions and processes, Technical report, University of Karlsruhe and KIT, 2008 | Zbl
[3] Feller V., Vvedenie v teoriyu veroyatnotei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.
[5] Houndré C., Kawai R., “On layered stable processes”, Bernoulli, 13 (2007), 252–278 | DOI | MR
[6] Kallenberg O., Foundations of Modern Probability. Probability and its Applications, Springer-Verlag, New York:, 1997, 523 pp. | MR
[7] Kim Y. S., Rachev S. T., Bianchi M. L., Fabozzi F. J., “Financial market models with Lévy processes and time-varying volatility”, J. Banking and Finance, 32 (2008), 1363–1378 | DOI
[8] Kim Y. S., Rachev S. T., Bianchi M. L., Fabozzi F. J., “A new tempered stable distribution and its application to finance”, Risk Assessment: Decisions in Banking and Finance, eds. G. Bol, S. T. Rachev, and R. Wurth, Physica-Verlag, Heidelberg, 2008, 51–84
[9] Kim Y. S., Rachev S. T., Chung D. M., Bianchi M. L., “The modified tempered stable distribution, GARCH models and option pricing”, Probab. Math. Statist., 29:1 (2009), 91–117 | MR | Zbl
[10] Rosiński J., “Series representations of Lévy processes from the perspective of point processes”, Lévy processes — Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick, Birkhäuser, Boston, 2001, 401–415 | MR | Zbl
[11] Rosiński J., “Tempering stable processes”, Stochastic Process. Appl., 117 (2007), 677–707 | DOI | MR | Zbl
[12] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman Hall, New York, 1994, 623 pp. | MR
[13] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR
[14] Schoenberg I. J., “Metric spaces and completely monotone functions”, Ann. Math., 39 (1938), 811–841 | DOI | MR
[15] Terdik G., Woyczyński W. A., “Rosiński measures for tempered stable and related Ornstein–Uhlenbeck processes”, Probab. Math. Statist., 26 (2006), 213–243 | MR | Zbl
[16] Tricomi F. G., Funzioni ipergeometriche confluenti, Edizioni Cremonese, Roma, 1954, 309 pp. | MR