Tempered infinitely divisible distributions and processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 59-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_1_a4,
     author = {M. Bianchi and S. T. Rachev and Y. S. Kim and F. J. Fabozzi},
     title = {Tempered infinitely divisible distributions and processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {59--86},
     year = {2010},
     volume = {55},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/}
}
TY  - JOUR
AU  - M. Bianchi
AU  - S. T. Rachev
AU  - Y. S. Kim
AU  - F. J. Fabozzi
TI  - Tempered infinitely divisible distributions and processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 59
EP  - 86
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/
LA  - en
ID  - TVP_2010_55_1_a4
ER  - 
%0 Journal Article
%A M. Bianchi
%A S. T. Rachev
%A Y. S. Kim
%A F. J. Fabozzi
%T Tempered infinitely divisible distributions and processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 59-86
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/
%G en
%F TVP_2010_55_1_a4
M. Bianchi; S. T. Rachev; Y. S. Kim; F. J. Fabozzi. Tempered infinitely divisible distributions and processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 59-86. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a4/

[1] Abramovits M., Stigan M., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 830 pp. | MR

[2] Bianchi M. L., Rachev S. T., Kim Y. S., Fabozzi F. J., Tempered infinitely divisible distributions and processes, Technical report, University of Karlsruhe and KIT, 2008 | Zbl

[3] Feller V., Vvedenie v teoriyu veroyatnotei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.

[5] Houndré C., Kawai R., “On layered stable processes”, Bernoulli, 13 (2007), 252–278 | DOI | MR

[6] Kallenberg O., Foundations of Modern Probability. Probability and its Applications, Springer-Verlag, New York:, 1997, 523 pp. | MR

[7] Kim Y. S., Rachev S. T., Bianchi M. L., Fabozzi F. J., “Financial market models with Lévy processes and time-varying volatility”, J. Banking and Finance, 32 (2008), 1363–1378 | DOI

[8] Kim Y. S., Rachev S. T., Bianchi M. L., Fabozzi F. J., “A new tempered stable distribution and its application to finance”, Risk Assessment: Decisions in Banking and Finance, eds. G. Bol, S. T. Rachev, and R. Wurth, Physica-Verlag, Heidelberg, 2008, 51–84

[9] Kim Y. S., Rachev S. T., Chung D. M., Bianchi M. L., “The modified tempered stable distribution, GARCH models and option pricing”, Probab. Math. Statist., 29:1 (2009), 91–117 | MR | Zbl

[10] Rosiński J., “Series representations of Lévy processes from the perspective of point processes”, Lévy processes — Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick, Birkhäuser, Boston, 2001, 401–415 | MR | Zbl

[11] Rosiński J., “Tempering stable processes”, Stochastic Process. Appl., 117 (2007), 677–707 | DOI | MR | Zbl

[12] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman Hall, New York, 1994, 623 pp. | MR

[13] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[14] Schoenberg I. J., “Metric spaces and completely monotone functions”, Ann. Math., 39 (1938), 811–841 | DOI | MR

[15] Terdik G., Woyczyński W. A., “Rosiński measures for tempered stable and related Ornstein–Uhlenbeck processes”, Probab. Math. Statist., 26 (2006), 213–243 | MR | Zbl

[16] Tricomi F. G., Funzioni ipergeometriche confluenti, Edizioni Cremonese, Roma, 1954, 309 pp. | MR