Global rate optimality in a model for diffusion tensor imaging
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 19-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_1_a2,
     author = {L. A. Sakhanenko},
     title = {Global rate optimality in a model for diffusion tensor imaging},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {19--35},
     year = {2010},
     volume = {55},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a2/}
}
TY  - JOUR
AU  - L. A. Sakhanenko
TI  - Global rate optimality in a model for diffusion tensor imaging
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 19
EP  - 35
VL  - 55
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a2/
LA  - ru
ID  - TVP_2010_55_1_a2
ER  - 
%0 Journal Article
%A L. A. Sakhanenko
%T Global rate optimality in a model for diffusion tensor imaging
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 19-35
%V 55
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a2/
%G ru
%F TVP_2010_55_1_a2
L. A. Sakhanenko. Global rate optimality in a model for diffusion tensor imaging. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 19-35. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a2/

[1] Chicone C., Ordinary Differential Equations with Applications, Springer, New York, 1999, 584 pp. | MR | Zbl

[2] Devroye L., A Course in Density Estimation, Birkhäuser, Boston, 1987, 183 pp. | MR | Zbl

[3] Hasminskii R., Ibragimov I., “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR

[4] Hille E., Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, 1969, 723 pp. | MR | Zbl

[5] Ibragimov M., Ibragimov R., “Optimal constants in the Rosenthal inequality for random variables with zero odd moments”, Statist. Probab. Lett., 78 (2007), 186–189 | DOI | MR

[6] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1978, 527 pp. | MR

[7] Ibragimov I. A., Khasminskii R. Z., “Ob otsenke plotnosti raspredeleniya”, Zapiski nauch. sem. LOMI, 98, 1980, 61–85 | MR | Zbl

[8] Ibragimov I. A., Khasminskii R. Z., “Esche ob otsenke plotnosti raspredeleniya”, Zapiski nauch. sem. LOMI, 108, 1981, 72–88 | MR | Zbl

[9] Koltchinskii V., Sakhanenko L., Cai S., “Integral curves of noisy vector fields and statistical problems in diffusion tensor imaging: Nonparametric kernel estimation and hypotheses testing”, Ann. Statist., 35:4 (2007), 1576–1607 | DOI | MR | Zbl

[10] Koltchinskii V., Sakhanenko L., “Asymptotics of statistical estimators of integral curves”, The Fifth International Conference on High Dimensional Probability (Luminy, 2008), eds. C. Houdre et al., IMS, 2009, 326–337

[11] Sakhanenko L. A., “Nizhnie granitsy dlya tochnosti otsenivaniya v metodakh issledovaniya tenzorov diffuzii”, Teoriya veroyatn. i ee primen., 54:1 (2009), 166–176 | Zbl

[12] van der Vaart A. W., Wellner J., Weak Convergence and Empirical Processes with Applications to Statistics, Springer-Verlag, New York, 1996, 508 pp. | MR