@article{TVP_2010_55_1_a14,
author = {L. Shepp and K. Farahmand},
title = {Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {196--204},
year = {2010},
volume = {55},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/}
}
TY - JOUR AU - L. Shepp AU - K. Farahmand TI - Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2010 SP - 196 EP - 204 VL - 55 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/ LA - en ID - TVP_2010_55_1_a14 ER -
%0 Journal Article %A L. Shepp %A K. Farahmand %T Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients %J Teoriâ veroâtnostej i ee primeneniâ %D 2010 %P 196-204 %V 55 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/ %G en %F TVP_2010_55_1_a14
L. Shepp; K. Farahmand. Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 196-204. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/
[1] Bharucha-Reid A. T., Sambandham M., Random Polynomials, Academic Press, Orlando, 1986, 206 pp. | MR | Zbl
[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[3] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.
[4] Kac M., “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl
[5] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965, 407 pp. | Zbl
[6] Kac M., Enigmas of Chance: An Autobiography, Harper Row, New York, 1985, 163 pp. | MR | Zbl
[7] Kac M., “On the average number of real roots of a random algebraic equation. II”, Proc. London Math. Soc., 50 (1949), 390–408 | DOI | MR
[8] Rice S. O., “Mathematical analysis of random noise”, System Tech. J., 25 (1945), 46–156 | MR
[9] Logan B. F., Shepp L. A., “Real zeros of random polynomials”, Proc. London Math. Soc., 18 (1968), 29–35 | DOI | MR | Zbl
[10] Logan B. F., Shepp L. A., “Real zeros of random polynomials. II”, Proc. London Math. Soc., 18 (1968), 308–314 | DOI | MR | Zbl
[11] Ibragimov I. A., Maslova N. B., “Srednee chislo nulei sluchainykh polinomov”, Vestn. Leningr. un-ta, 23:19 (1968), 171–172 | MR | Zbl
[12] Zaporozhets D. N., “Primer sluchainogo polinoma s neobychnym povedeniem kornei”, Teoriya veroyatn. i ee primen., 50:3 (2005), 549–555 | MR
[13] Ibragimov I. A., Zaporozhets D., On the distribution of roots of random polynomials, Preprint NoA306-060, Bielefeld University, 2006
[14] Dembo A., Poonen B., Shao Q., Zeitouni O., “Random polynomials having few or no zeros”, J. Amer. Math. Soc., 15:4 (2002), 857–892 | DOI | MR | Zbl
[15] Zaporozhets D. N., Nazarov A. I., “Kak malo byvaet kornei u sluchainogo polinoma v srednem”, Teoriya veroyatn. i ee primen., 53:1 (2008), 40–58 | MR