Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 196-204

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_2010_55_1_a14,
     author = {L. Shepp and K. Farahmand},
     title = {Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {196--204},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/}
}
TY  - JOUR
AU  - L. Shepp
AU  - K. Farahmand
TI  - Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 196
EP  - 204
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/
LA  - en
ID  - TVP_2010_55_1_a14
ER  - 
%0 Journal Article
%A L. Shepp
%A K. Farahmand
%T Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 196-204
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/
%G en
%F TVP_2010_55_1_a14
L. Shepp; K. Farahmand. Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 196-204. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/