Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 196-204
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TVP_2010_55_1_a14,
     author = {L. Shepp and K. Farahmand},
     title = {Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {196--204},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/}
}
                      
                      
                    TY - JOUR AU - L. Shepp AU - K. Farahmand TI - Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2010 SP - 196 EP - 204 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/ LA - en ID - TVP_2010_55_1_a14 ER -
%0 Journal Article %A L. Shepp %A K. Farahmand %T Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients %J Teoriâ veroâtnostej i ee primeneniâ %D 2010 %P 196-204 %V 55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/ %G en %F TVP_2010_55_1_a14
L. Shepp; K. Farahmand. Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 196-204. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a14/
