@article{TVP_2010_55_1_a12,
author = {S. V. Nagaev},
title = {On conditions sufficient for subexponentiality},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {176--186},
year = {2010},
volume = {55},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a12/}
}
S. V. Nagaev. On conditions sufficient for subexponentiality. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 176-186. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a12/
[1] Chistyakov V. P., “Teorema o summakh nezavisimykh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatn. i ee primen., 9:4 (1964), 710–718 | Zbl
[2] Athreya K. B., Ney P. E., Branching Processes, Springer, New York, Heidelberg, 1972, 287 pp. | MR | Zbl
[3] Goldie C. M., “Subexponential distributions and dominated-variation tails”, J. Appl. Probab., 15 (1978), 440–442 | DOI | MR | Zbl
[4] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491. pp. | MR | Zbl
[5] Embrechts P., Klüppelberg C., Mikosch T., Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997, 645 pp. | MR | Zbl
[6] Goldie C. M., Klüppelberg C., “Subexponential distributions”, A Practical Guide to Heavy Tails (Santa Barbara, 1995), eds. R. J. Alder, R. E. Feldman, and M. S. Taqqu, Birkhäuser, Boston, 1998, 435–459 | MR | Zbl
[7] Borovkov A. A., Borovkov K. A., Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions, Cambridge Univ. Press, Cambridge, 2008, 625 pp. | MR | Zbl
[8] Nagaev S. V., “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 10:2 (1965), 231–254 | MR | Zbl
[9] Nagaev A. V., “Ob odnom svoistve summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 22:2 (1977), 335–346 | MR | Zbl
[10] Pitman E. J. G., “Subexponential distribution functions”, J. Austral. Math. Soc. Ser. A, 29:3, 337–347 | DOI | MR | Zbl