@article{TVP_2009_54_4_a6,
author = {D. Ferger and D. Vogel},
title = {Weak convergence of the empirical process and the rescaled empirical distribution function in the {Skorokhod} product space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {750--770},
year = {2009},
volume = {54},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a6/}
}
TY - JOUR AU - D. Ferger AU - D. Vogel TI - Weak convergence of the empirical process and the rescaled empirical distribution function in the Skorokhod product space JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 750 EP - 770 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a6/ LA - en ID - TVP_2009_54_4_a6 ER -
%0 Journal Article %A D. Ferger %A D. Vogel %T Weak convergence of the empirical process and the rescaled empirical distribution function in the Skorokhod product space %J Teoriâ veroâtnostej i ee primeneniâ %D 2009 %P 750-770 %V 54 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a6/ %G en %F TVP_2009_54_4_a6
D. Ferger; D. Vogel. Weak convergence of the empirical process and the rescaled empirical distribution function in the Skorokhod product space. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 750-770. http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a6/
[1] Al-Hussaini A., Elliott R. J., “Convergence of the empirical distribution to the Poisson process”, Stochastics, 13:4 (1984), 299–308 | MR | Zbl
[2] Bauer H., Maß- und Integrationstheorie, de Gruyter, Berlin, 1992, 260 pp. | MR | Zbl
[3] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1999, 277 pp. | MR | Zbl
[4] Csörgő M., Horváth L., “Convergence of the empirical and quantile distributions to Poisson measures”, Statist. Decis., 6:1–2 (1988), 129–136 | MR | Zbl
[5] Chernoff H., Rubin H., “The estimation of the location of a discontinuity in density”, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, v. I, Univ. of California Press, Berkeley, 1956, 19–37 | MR
[6] Donsker M. D., “An invariance principle for certain probability limit theorems”, Mem. Amer. Math. Soc., 1951, no. 6, 1951, 1–12 | MR
[7] Donsker M. D., “Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statist., 23 (1952), 277–281 | DOI | MR | Zbl
[8] Doob J. L., “Heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statist., 20 (1949), 393–403 | DOI | MR | Zbl
[9] Ethier S. N., Kurtz T. G., Markov Processes: Characterization and Convergence, Wiley, New York, 1986, 534 pp. | MR | Zbl
[10] Elstrodt J., Maß- und Integrationstheorie, Springer-Verlag, Berlin, 2005, 434 pp. | MR
[11] Ferger D., “On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments”, ESAIM Probab. Statist., 9 (2005), 307–322 | DOI | MR | Zbl
[12] Galambosh Ya., Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984, 303 pp. | MR
[13] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, t. 1, 2, Nauka, M., 1994, 542 pp.; 336 pp.
[14] Kabanov Yu. M., Liptser R. Sh.,Shiryaev A. N., “Some limit theorems for simple point processes (a martingale approach)”, Stochastics, 3:3 (1980), 203–216 | MR | Zbl
[15] Kolmogoroff A. N., “Sulla determinazione empirica di una legge di distribuzione”, Giorn. Ist. Ital. Attuari, 4:1 (1933), 83–91; A. N. Kolmogorov, “Ob empiricheskom opredelenii zakona raspredeleniya”, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 134–141 | MR
[16] Kolmogorov A. N., “O skhodimosti A. V. Skorokhoda”, Teoriya veroyatn. i ee primen., 1:2 (1956), 239–247 | Zbl
[17] Lindvall T., “Weak convergence of probability measures and random functions in the function space $D[0,\infty)$”, J. Appl. Probab., 10 (1973), 109–121 | DOI | MR | Zbl
[18] Pollard D., Convergence of Stochastic Processes, Springer-Verlag, New York, 1984, 215 pp. | MR | Zbl
[19] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl
[20] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999, 602 pp. | MR | Zbl
[21] Rossberg H.-J., “Über das asymptotische Verhalten der Rand- und Zentralglieder einer Variationsreihe. II”, Publ. Math. Debrecen, 14 (1967), 83–90 | MR | Zbl
[22] Skorokhod A. V., “Predelnye teoremy dlya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 1:3 (1956), 289–319 | Zbl
[23] Smirnov N. V., “Priblizhenie zakonov raspredeleniya sluchainykh velichin po empiricheskim dannym”, Uspekhi matem. nauk, 1944, no. 10, 179–206 | MR | Zbl
[24] Stone C., “Weak convergence of stochastic processes defined on semi-infinite time intervals”, Proc. Amer. Math. Soc., 14 (1963), 694–696 | DOI | MR | Zbl
[25] Shorack G. R., Wellner J. A., Empirical Processes with Applications to Statistics, Wiley, New York, 1986, 939 pp. | MR
[26] van der Vaart A. W., Wellner J. A., Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996, 508 pp. | MR
[27] Vogel D., Weak convergence of the empirical process and the rescaled empirical distribution function in the Skorokhod product space, Master's thesis, Technische Universität Dresden, Dresden, 2005
[28] Whitt W., “Weak convergence of probability measures on the function space $C[0,\infty)$”, Ann. Math. Statist., 41 (1970), 939–944 | DOI | MR | Zbl
[29] Whitt W., Weak Convergence of Probability Measures on the Function Space $D[0,\infty)$, Technical Report, Yale University, 1971
[30] Whitt W., Stochastic-Process Limits, Springer-Verlag, New York, 2002, 602 pp. | MR