@article{TVP_2009_54_4_a5,
author = {S. Bahlali},
title = {Necessary and sufficient conditions of optimality for optimal control problems of forward and backward systems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {730--749},
year = {2009},
volume = {54},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a5/}
}
TY - JOUR AU - S. Bahlali TI - Necessary and sufficient conditions of optimality for optimal control problems of forward and backward systems JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 730 EP - 749 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a5/ LA - en ID - TVP_2009_54_4_a5 ER -
S. Bahlali. Necessary and sufficient conditions of optimality for optimal control problems of forward and backward systems. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 730-749. http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a5/
[1] Antonelli F., “Backward-forward stochastic differential equations”, Ann. Appl. Probab., 3:3 (1993), 777–793 | DOI | MR | Zbl
[2] Antonelli F., Ma. J., “Weak solutions of forward-backward SDE's”, Stoch. Anal. Appl., 21:3 (2003), 493–514 | DOI | MR | Zbl
[3] Arkin V. I., Saksonov M. T., “Neobkhodimye usloviya optimalnosti v zadachakh upravleniya stokhasticheskimi differentsialnymi uravneniyami”, Dokl. AN SSSR, 244:1 (1979), 11–15 | MR | Zbl
[4] Armerin F., Aspects of cash flow valuation, Ph.D. Thesis, KTH, Stockholm, 2004
[5] Bahlali S., Mezerdi B., “A general stochastic maximum principle for singular control problems”, Electron. J. Probab., 10:30 (2005), 988–1004 | MR | Zbl
[6] Bahlali S., Mezerdi B., Djehiche, B., “Approximation and optimality necessary conditions in relaxed stochastic control problems”, J. Appl. Math. Stoch. Anal., 2006 (2006), Article ID 72762, 23 pp., ages | DOI | MR | Zbl
[7] Bahlali S., Labed B., “Necessary and sufficient conditions of optimality for optimal control problem with initial and terminal costs”, Random Oper. Stoch. Equ., 14:3 (2006), 291–301 | DOI | MR | Zbl
[8] Bahlali S., Djehiche B., Mezerdi B., “The relaxed stochastic maximum principle in singular control of diffusions”, SIAM J. Control Optim., 46:2 (2007), 427–444 | DOI | MR | Zbl
[9] Bensoussan A., “Lectures on stochastic control”, Lecture Notes in Math., 972, 1982, 1–62 | MR
[10] Cadenillas A., Karatzas I., “The stochastic maximum principle for linear convex optimal control with random coefficients”, SIAM J. Control Optim., 33:2 (1995), 590–624 | DOI | MR | Zbl
[11] Delarue F., “On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case”, Stochastic Process. Appl., 99:2 (2002), 209–286 | DOI | MR | Zbl
[12] Dokuchaev N., Zhou X. Y., “Stochastic controls with terminal contingent conditions”, J. Math. Anal. Appl., 238:1 (1999), 143–165 | DOI | MR | Zbl
[13] Douglas J., Ma J., Protter P., “Numerical methods for forward-backward stochastic differential equations”, Ann. Appl. Probab., 6:3 (1996), 940–968 | DOI | MR | Zbl
[14] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR
[15] N. El Karoui and L. Mazliak (eds.), Backward Stochastic Differential Equations, Longman, Harlow, 1997, 221 pp. | MR
[16] El Karoui N., Peng S., Quenez M. C., “Backward stochastic differential equations in finance”, Math. Finance, 7:1 (1997), 1–71 | DOI | MR | Zbl
[17] Fuhrman M., Tessitore G., “Existence of optimal stochastic controls and global solutions of forward-backward stochastic differential equations”, SIAM J. Control Optim., 43:3 (2004), 813–830 | DOI | MR | Zbl
[18] Haussmann U. G., “General necessary conditions for optimal control of stochastic systems”, Stochastic Systems: Modeling, Identification and Optimization (Lexington, 1975), Math. Programming Stud., 6, North-Holland, Amsterdam, 1976, 30–48 | MR
[19] Haussmann U. G., A Stochastic Maximum Principle for Optimal Control of Diffusions, Longman, Wiley, Harlow–New York, 1986, 109 pp. | MR | Zbl
[20] Hu Y., “On the solution of forward-backward SDEs with monotone and continuous coefficients”, Nonlinear Anal., 42 (2000), 1–12 | DOI | MR
[21] Hu Y., Peng S., “Solution of forward-backward stochastic differential equations”, Probab. Theory Related Fields, 103:2 (1995), 273–283 | DOI | MR | Zbl
[22] Hu Y., Yong J., “Forward-backward stochastic differential equations with nonsmooth coefficients”, Stochastic Process. Appl., 87:1 (2000), 93–106 | DOI | MR | Zbl
[23] Kushner H. J., “Necessary conditions for continuous parameter stochastic optimization problems”, SIAM J. Control Optim., 10 (1972), 550–565 | DOI | MR | Zbl
[24] Ma J., Protter P., Yong J., “Solving forward-backward stochastic differential equations explicitly — a four step scheme”, Probab. Theory Related Fields, 98:3 (1994), 339–359 | DOI | MR | Zbl
[25] Ma J., Yong J., “Forward-backward stochastic differential equations and their applications”, Lecture Notes in Math., 1702, 1999, 1–270 | MR
[26] Ma J., Zhang J., “Representation theorems for backward stochastic differential equations”, Ann. Appl. Probab., 12:4 (2002), 1390–1418 | DOI | MR | Zbl
[27] Pardoux É., Peng S., “Adapted solutions of a backward stochastic differential equations”, Systems Control Lett., 14:1 (1990), 55–61 | DOI | MR | Zbl
[28] Pardoux E., Tang S., “Forward-backward stochastic differential equations and quasilinear parabolic PDEs”, Probab. Theory Related Fields, 114:2 (1999), 123–150 | DOI | MR | Zbl
[29] Peng S., “A general stochastic maximum principle for optimal control problems”, SIAM J. Control Optim., 28:4 (1990), 966–979 | DOI | MR | Zbl
[30] Peng S., “Backward stochastic differential equations and application to optimal control”, Appl. Math. Optim., 27:2 (1993), 125–144 | DOI | MR | Zbl
[31] Peng S., Wu Z., “Fully coupled forward-backward stochastic differential equations and applications to optimal control”, SIAM J. Control Optim., 37:3 (1999), 825–843 | DOI | MR | Zbl
[32] Wu Z., “Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems”, Systems Sci. Math. Sci., 11:3 (1998), 249–259 | MR | Zbl
[33] Xu W., “Stochastic maximum principle for optimal control problem of forward and backward system”, J. Austral. Math. Soc. Ser. B, 37:2 (1995), 172–185 | DOI | MR | Zbl
[34] Yong J., “Finding adapted solutions of forward-backward stochastic differential equations: method of continuation”, Probab. Theory Related Fields, 107:4 (1997), 537–572 | DOI | MR | Zbl