An upper estimate for the absolute constant in the Berry–Esseen inequality
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 671-695 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2009_54_4_a2,
     author = {V. Yu. Korolev and I. G. Shevtsova},
     title = {An upper estimate for the absolute constant in the {Berry{\textendash}Esseen} inequality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {671--695},
     year = {2009},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a2/}
}
TY  - JOUR
AU  - V. Yu. Korolev
AU  - I. G. Shevtsova
TI  - An upper estimate for the absolute constant in the Berry–Esseen inequality
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 671
EP  - 695
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a2/
LA  - ru
ID  - TVP_2009_54_4_a2
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%A I. G. Shevtsova
%T An upper estimate for the absolute constant in the Berry–Esseen inequality
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 671-695
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a2/
%G ru
%F TVP_2009_54_4_a2
V. Yu. Korolev; I. G. Shevtsova. An upper estimate for the absolute constant in the Berry–Esseen inequality. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 671-695. http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a2/

[1] Bentkus V., Kirsha K., “Otsenki blizosti funktsii raspredeleniya k normalnomu zakonu”, Lit. matem. sb., 29:4 (1989), 657–673 | MR | Zbl

[2] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheski razlozheniem, Nauka, M., 1982, 286 pp.

[3] Gaponova M. O., Shevtsova I. G., “Asimptoticheskie otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena dlya raspredelenii, ne imeyuschikh tretego momenta”, Informatika i ee primen., 3:4 (2009) (to appear)

[4] Zolotarev V. M., “O blizosti raspredelenii dvukh summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:3 (1965), 519–526 | MR | Zbl

[5] Zolotarev V. M., “Absolyutnaya otsenka ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 11:1 (1966), 108–119 | MR | Zbl

[6] Zolotapev V. M., Sovpemennaya teopiya summipovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp.

[7] Kolmogorov A. N., “Nekotorye raboty poslednikh let v oblasti predelnykh teorem teorii veroyatnostei”, Vestnik Mosk. un-ta, 1953, no. 10, 29–38 | Zbl

[8] Korolev V. Yu., Shevtsova I. G., “Utochnenie neravenstva Berri–Esseena”, Dokl. RAN, 2010 (to appear)

[9] Korolev V. Yu., Shevtsova I. G., “Utochnenie verkhnei otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena dlya smeshannykh puassonovskikh sluchainykh summ”, Dokl. RAN, 2010 (to appear)

[10] Kramer G., Sluchainye velichiny i raspredeleniya veroyatnostei, IL, M., 1947, 144 pp.

[11] Nagaev S. V., Chebotarev V. I., “Novyi podkhod k otsenke absolyutnoi konstanty v neravenstve Berri–Esseena”, Tezisy dokladov XXXI Dalnevostochnoi shkoly-seminara im. akad. E. V. Zolotova, Vladivostok, 2006, 19

[12] Paulauskas V. I., “O neravenstve sglazhivaniya”, Lit. matem. sb., 11:4 (1971), 861–866 | MR | Zbl

[13] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp. | MR

[14] Rogozin B. A., “Odno zamechanie k rabote Esseena “Momentnoe neravenstvo s primeneniem k tsentralnoi predelnoi teoreme””, Teoriya veroyatn. i ee primen., 5:1 (1960), 125–128 | MR

[15] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967, 752 pp. | MR

[16] Chistyakov G. P., “Novoe asimptoticheskoe razlozhenie i asimptoticheski nailuchshie postoyannye v teoreme Lyapunova. I, II, III”, Teoriya veroyatn. i ee primen., 46:2 (2001), 326–344 ; 46:3, 573–579 ; 47:3 (2002), 475–497 | MR | Zbl | MR | MR | Zbl

[17] Shevtsova I. G., “Utochnenie verkhnei otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena”, Teoriya veroyatn. i ee primen., 51:3 (2006), 622–626 | MR

[18] Shevtsova I. G., “Ob absolyutnoi postoyannoi v neravenstve Berri–Esseena”, Sb. statei molodykh uchenykh fakulteta VMiK MGU, vyp. 5, Izd-vo fakulteta VMiK MGU, M., 2008, 101–110

[19] Shevtsova I. G., “O neravenstve sglazhivaniya”, Dokl. RAN, 430:5 (2010) (to appear)

[20] Shevtsova I. G., “izhnyaya asimptoticheski pravilnaya postoyannaya v tsentralnoi predelnoi teoreme”, Dokl. RAN, 430:4 (2010) (to appear)

[21] Shiganov I. S., “Ob utochnenii verkhnei konstanty v ostatochnom chlene tsentralnoi predelnoi teoremy”, Problemy ustoichivosti stokhasticheskikh modelei, Trudy seminara, Izd-vo VNIISI, M., 1982, 109–115 | MR

[22] van Beek P., Fourier-analytische Methoden zur Verscharfung der Berry–Esseen Schranke, Doctoral dissertation, Friedrich Wilhelms Universitat, Bonn, 1971

[23] van Beek P., “An application of Fourier methods to the problem of sharpening the Berry–Esseen inequality”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 23 (1972), 187–196 | DOI | MR | Zbl

[24] Bentkus V., On the asymptotical behavior of the constant in the Berry–Esseen inequality, Preprint 91–078, Universität Bielefeld, 1991

[25] Bentkus V., “On the asymptotical behavior of the constant in the Berry–Esseen inequality”, J. Theor. Probab., 2:2 (1994), 211–224 | DOI | MR | Zbl

[26] Bergström H., “On the central limit theorem”, Skand. Aktuarietidskr., 27 (1944), 139–153 | MR | Zbl

[27] Bergström H., “On the central limit theorem in the case of not equally distributed random variables”, Skand. Aktuarietidskr., 32 (1949), 37–62 | MR

[28] Berry A. C., “The accuracy of the Gaussian approximation to the sum of independent variables”, Trans. Amer. Math. Soc., 49 (1941), 122–136 | DOI | MR

[29] Cramér H., “Das Gesetz von Gauss und die Theorie des Risikos”, Skand. Aktuarietidskr., 6 (1923), 209–237

[30] Cramér H., “On the composition of elementary errors”, Skand. Aktuarietidskr., 11 (1928), 141–180 | Zbl

[31] Esseen C.-G., “On the Liapunoff limit of error in the theory of probability”, Ark. Mat. Astron. Fys., A28:9 (1942), 1–19 | MR

[32] Esseen C.-G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR

[33] Hipp C., Mattner L., “On the normal approximation to symmetric binomial distributions”, Teoriya veroyatn. i ee primen., 52:3 (2007), 610–617

[34] Hsu P. L., “The approximate distributions of the mean and variance of a sample of independent variables”, Ann. Math. Statist., 16:1 (1945), 1–29 | DOI | MR | Zbl

[35] Ikeda S., “A note on the normal approximation to the sum of independent random variables”, Ann. Inst. Statist. Math., 11 (1959), 121–130 | DOI | MR | Zbl

[36] Liapunoff A., “Sur une proposition de la théorie des probabilités”, Bull. Acad. Sci. St.-Petersbourg, 13 (1900), 359–386

[37] Liapunoff A., “Nouvelle forme du théorème sur la limite de probabilité”, Mem. Acad. Sci. St.-Petersbourg, 12:5 (1901), 1–24

[38] Prawitz H., “Limits for a distribution, if the characteristic function is given in a finite domain”, Scand. Aktuarietidskr., 2 (1972), 138–154 | MR

[39] Prawitz H., Remainder term estimation for convolution of identical components, Unpublished manuscript of the lecture given on 16 June, 1972 at the Summer School of the Swedish Statistical Society, 12–21 June, 1972, Löttorp, Sweden

[40] Prawitz H., “Ungleichungen für den absoluten Betrag einer charakteristischen funktion”, Skand. Aktuarietidskr., 1 (1973), 11–16 | MR

[41] Prawitz H., “On the remainder in the central limit theorem. I”, Scand. Actuarial J., 3 (1975), 145–156 | MR

[42] Takano K., “A remark on Berry's paper”, Kakyuraku Inst. Statist. Math., 6 (1950) (in Japanese)

[43] Takano K., “A remark to a result of A. C. Berry”, Res. Mem. Inst. Math., 9:6 (1951), 4.08–4.15

[44] Wallace D. L., “Asymptotic approximations to distributions”, Ann. Math. Statist., 29 (1958), 635–654 | DOI | MR | Zbl

[45] Wallace D. L., A corrected computation of Berry's bound for the central limit theorem error, Stat. Res. Cent., University of Chicago, Chicago, 1959

[46] Zahl S., Bounds for the central limit theorem error, Ph.D. Thesis, Harward University, Cambridge, MA, 1963

[47] Zahl S., “Bounds for the central limit theorem error”, SIAM J. Appl. Math., 14:6 (1966), 1225–1245 | DOI | MR | Zbl

[48] Zolotarev V. M., “A sharpening of the inequality of Berry–Esseen”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 8 (1967), 332–342 | DOI | MR | Zbl