Uniform mean laws for sequences of dependent random elements
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 801-809 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2009_54_4_a13,
     author = {I. S. Tyurin},
     title = {Uniform mean laws for sequences of dependent random elements},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {801--809},
     year = {2009},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a13/}
}
TY  - JOUR
AU  - I. S. Tyurin
TI  - Uniform mean laws for sequences of dependent random elements
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 801
EP  - 809
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a13/
LA  - ru
ID  - TVP_2009_54_4_a13
ER  - 
%0 Journal Article
%A I. S. Tyurin
%T Uniform mean laws for sequences of dependent random elements
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 801-809
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a13/
%G ru
%F TVP_2009_54_4_a13
I. S. Tyurin. Uniform mean laws for sequences of dependent random elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 801-809. http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a13/

[1] Vapnik V. N., Statistical Learning Theory, Wiley, New York, 1998, 736 pp. | MR | Zbl

[2] Vapnik V. N., Chervonenkis A. Ya., “Neobkhodimye i dostatochnye usloviya ravnomernoi skhodimosti srednikh k matematicheskim ozhidaniyam”, Teoriya veroyatn. i ee primen., 26:3 (1981), 543–563 | MR | Zbl

[3] Talagrand M., “The Glivenko–Cantelli problem”, Ann. Probab., 15:3 (1986), 837–870 | DOI | MR

[4] Talagrand M., “The Glivenko–Cantelli problem, ten years later”, J. Theoret. Probab., 9:2 (1996), 371–384 | DOI | MR | Zbl

[5] Nobel A., Dembo A., “A note on uniform laws of averages for dependent processes”, Statist. Probab. Lett., 17:3 (1993), 169–172 | DOI | MR | Zbl

[6] Peligrad M., “A note on the uniform laws for dependent processes via coupling”, J. Theoret. Probab., 14:4 (2001), 979–988 | DOI | MR | Zbl

[7] Pollard D., Convergence of Stochastic Processes, Springer, New York, 1984, 215 pp. | MR | Zbl

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR

[9] Bryc W., “On the approximation theorem of I. Berkes and W. Philipp”, Demonstratio Math., 15:3 (1982), 807–816 | MR | Zbl

[10] Shiryaev A. N., Veroyatnost, t. 2, MTsNMO, M., 2004, 408 pp.

[11] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.