Continuity of the natural filtration of a process with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 783-789 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2009_54_4_a10,
     author = {V. M. Kruglov},
     title = {Continuity of the natural filtration of a process with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {783--789},
     year = {2009},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a10/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - Continuity of the natural filtration of a process with independent increments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 783
EP  - 789
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a10/
LA  - ru
ID  - TVP_2009_54_4_a10
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T Continuity of the natural filtration of a process with independent increments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 783-789
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a10/
%G ru
%F TVP_2009_54_4_a10
V. M. Kruglov. Continuity of the natural filtration of a process with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 4, pp. 783-789. http://geodesic.mathdoc.fr/item/TVP_2009_54_4_a10/

[1] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[2] Yeh J., Martingales and Stochastic Analysis, World Scientific, Singapore, 1995, 516 pp. | MR

[3] Bretagnolle J. L., Chatterji S. D. Meyer P. A., Ecole d'ete de probabilites: Processus Stochastiques, Springer, Berlin, 2008

[4] Protter P. E., Stochastic Integration and Differential Equations, Second ed., Springer, Berlin, 2004, 444 pp. | MR

[5] Medvegyev P., Stochastic Integration Theory, Oxford Univ. Press, New York, 2008, 632 pp. | MR

[6] Hewitt E., Stromberg K., Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer-Verlag, New York, 1965, 476 pp. | MR

[7] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.