@article{TVP_2009_54_3_a5,
author = {P. A. Yaskov},
title = {The rate of convergence estimations in the weak law of large numbers for epidemic processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {533--550},
year = {2009},
volume = {54},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_3_a5/}
}
P. A. Yaskov. The rate of convergence estimations in the weak law of large numbers for epidemic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 3, pp. 533-550. http://geodesic.mathdoc.fr/item/TVP_2009_54_3_a5/
[1] Bartlett M. S., “Some evolutionary stochastic processes”, J. Roy. Statist. Soc. Ser. B, 11 (1949), 211–229 | MR | Zbl
[2] Barbour A. D., “On a functional central limit theorem for Markov population processes”, Adv. Appl. Probab., 6 (1974), 21–39 | DOI | MR | Zbl
[3] Sellke T., “On the asymptotic distribution of the size of a stochastic epidemic”, J. Appl. Probab., 20:2 (1983), 390–394 | DOI | MR | Zbl
[4] Becker N., “The uses of epidemic models”, Biometrics, 35 (1979), 295–305 | DOI
[5] Mollison D., Epidemic Models: Their Structure and Relation to Data, Cambridge Univ. Press, Cambridge, 1995
[6] Reinert G., “The asymptotic evolution of the General Stochastic Epidemic”, Ann. Appl. Probab., 5:4 (1995), 1061–1086 | DOI | MR | Zbl
[7] Reinert G., “Stein's method for epidemic processes”, Complex Stochastic Systems, eds. O. E. Barndorff–Nielsen, D. R. Cox, and C. Klüppelberg, Chapman Hall/CRC, Boca Raton, 2001, 235–275 | MR
[8] Reinert G., “A weak law of large numbers for empirical measures via Stein's method”, Ann. Probab., 23:1 (1995), 334–354 | DOI | MR | Zbl
[9] Massart P., “The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality”, Ann. Probab., 18:3 (1990), 1269–1283 | DOI | MR | Zbl
[10] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 830 pp. | MR
[11] Dudley R. M., Uniform Central Limit Theorems., Cambridge Univ. Press, Cambridge, 1999, 436 pp. | MR
[12] Vapnik V. N., Statistical Learning Theory, Wiley, New York, 1998, 736 pp. | MR | Zbl