Estimates from below for densities of martingale measures in the Dalang–Morton–Willinger theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 3, pp. 492-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2009_54_3_a3,
     author = {D. B. Rokhlin},
     title = {Estimates from below for densities of martingale measures in the {Dalang{\textendash}Morton{\textendash}Willinger} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {492--514},
     year = {2009},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_3_a3/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - Estimates from below for densities of martingale measures in the Dalang–Morton–Willinger theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 492
EP  - 514
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_3_a3/
LA  - ru
ID  - TVP_2009_54_3_a3
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T Estimates from below for densities of martingale measures in the Dalang–Morton–Willinger theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 492-514
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_3_a3/
%G ru
%F TVP_2009_54_3_a3
D. B. Rokhlin. Estimates from below for densities of martingale measures in the Dalang–Morton–Willinger theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 3, pp. 492-514. http://geodesic.mathdoc.fr/item/TVP_2009_54_3_a3/

[1] Aliprantis C. D., Border K. C., Infinite Dimensional Analysis. A Hitchhicker's Guide, Springer, Berlin, 2006, 703 pp. | MR

[2] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[3] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl

[4] Delbaen F., Schachermayer W., The Mathematics of Arbitrage, Springer, Berlin, 2006, 373 pp. | MR

[5] Evstigneev I. V., Schürger K., Taksar M. I., “On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria”, Math. Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl

[6] Leitner J., “Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures”, Statist. Decisions, 23:1 (2005), 49–66 | DOI | MR | Zbl

[7] Leitner J., “Optimal portfolios with lower partial moment constraints and LPM-risk-optimal martingale measures”, Math. Finance, 18:2 (2008), 317–331 | DOI | MR | Zbl

[8] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000, 176 pp.

[9] Rásonyi M., Stettner L., “On utility maximization in discrete-time financial market models”, Ann. Appl. Probab., 15:2 (2005), 1367–1395 | DOI | MR | Zbl

[10] Rockafellar R. T., “Duality and stability in extremum problems involving convex functions”, Pacific J. Math., 21:1 (1967), 167–187 | MR | Zbl

[11] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[12] Rockafellar R. T., Wets R. J.-B., Variational Analysis, Springer, Berlin, 1998, 733 pp. | MR | Zbl

[13] Rokhlin D. B., “The Kreps–Yan theorem for $L^\infty$”, Int. J. Math. Math. Sci., 2005:17 (2005), 2749–2756 | DOI | MR | Zbl

[14] Rokhlin D., Schachermayer W., “A note on lower bounds of martingale measure densities”, Illinois J. Math., 50:4 (2006), 815–824 | MR | Zbl

[15] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki. T. 2: Teoriya, Fazis, M., 1998, 528 pp.