@article{TVP_2009_54_2_a9,
author = {M. Ya. Kelbert},
title = {Markov process representation for polyharmonic functions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {354--359},
year = {2009},
volume = {54},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_2_a9/}
}
M. Ya. Kelbert. Markov process representation for polyharmonic functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 2, pp. 354-359. http://geodesic.mathdoc.fr/item/TVP_2009_54_2_a9/
[1] Aronszajn N., Creese T. M., Lipkin L. J., Polyharmonic Functions, Clarendon Press, New York, 1983, 265 pp. | MR | Zbl
[2] Balk M. B., Polyanalytic Functions, Academie-Verlag, Berlin, 1991, 197 pp. | MR
[3] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb., 2000, 639 pp. | Zbl
[4] Doléans-Dade C., Meyer P.-A., “Intégrales stochastiques par rapport aux martingales locales”, Lecture Notes in Math., 124, 1970, 77–107 | MR | Zbl
[5] Helms L. L., “Biharmonic functions and Brownian motion”, J. Appl. Probab., 4 (1967), 130–136 | DOI | MR | Zbl
[6] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[7] Vekua I. N., New Methods for Solving Elliptic Equations, North-Holland, Wiley, Amsterdam–New York, 1967, 358 pp. | MR | Zbl