A unified approach to stochastic evolution equations using the Skorokhod integral
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 2, pp. 288-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2009_54_2_a5,
     author = {S. V. Lototskii and B. L. Rozovskii},
     title = {A unified approach to stochastic evolution equations using the {Skorokhod} integral},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {288--303},
     year = {2009},
     volume = {54},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_2_a5/}
}
TY  - JOUR
AU  - S. V. Lototskii
AU  - B. L. Rozovskii
TI  - A unified approach to stochastic evolution equations using the Skorokhod integral
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 288
EP  - 303
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_2_a5/
LA  - en
ID  - TVP_2009_54_2_a5
ER  - 
%0 Journal Article
%A S. V. Lototskii
%A B. L. Rozovskii
%T A unified approach to stochastic evolution equations using the Skorokhod integral
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 288-303
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_2_a5/
%G en
%F TVP_2009_54_2_a5
S. V. Lototskii; B. L. Rozovskii. A unified approach to stochastic evolution equations using the Skorokhod integral. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 2, pp. 288-303. http://geodesic.mathdoc.fr/item/TVP_2009_54_2_a5/

[1] Cameron R. H., Martin W. T., “The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals”, Ann. Math., 48:2 (1947), 385–392 | DOI | MR | Zbl

[2] Holden H., Øksendal B., Ubøe J., Zhang T., Stochastic Partial Differential Equations, Birkhäuser, Boston, 1996, 231 pp. | MR | Zbl

[3] Itô K., “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169 | DOI | MR | Zbl

[4] Kondratiev Yu. G., Leukert P., Potthoff J., Streit L., Westerkamp W., “Generalized functionals in Gaussian spaces: the characterization theorem revisited”, J. Funct. Anal., 141:2 (1996), 301–318 | DOI | MR | Zbl

[5] Krylov N. V., Introduction to the theory of diffusion processes, Amer. Math. Soc., Providence, 1995, 230 pp. | MR | Zbl

[6] Krylov N. V., Veretennikov A. Yu., “O yavnykh formulakh dlya reshenii stokhasticheskikh uravnenii”, Matem. sb., 100(142):2(6) (1976), 266–284 | MR | Zbl

[7] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp. | MR

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl

[9] Nualart D., The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 2006, 382 pp. | MR

[10] Rozovskii B. L., Evolyutsionnye stokhasticheskie sistemy, Nauka, M., 1983, 208 pp. | MR