Sample Functions of Stochastic Measures and Besov Spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 161-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers stochastic measures, i.e., sets of functions given on the Borel sigma-algebra in $[0,1]^d$ sigma-additive with respect to probability. It is shown that realizations of continuous random functions generated by stochastic measures belong to the Besov spaces under some general sufficiently assumptions.
Keywords: stochastic measure, trajectories of random functions.
Mots-clés : Besov spaces
@article{TVP_2009_54_1_a9,
     author = {V. M. Radchenko},
     title = {Sample {Functions} of {Stochastic} {Measures} and {Besov} {Spaces}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {161--169},
     year = {2009},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a9/}
}
TY  - JOUR
AU  - V. M. Radchenko
TI  - Sample Functions of Stochastic Measures and Besov Spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 161
EP  - 169
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a9/
LA  - ru
ID  - TVP_2009_54_1_a9
ER  - 
%0 Journal Article
%A V. M. Radchenko
%T Sample Functions of Stochastic Measures and Besov Spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 161-169
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a9/
%G ru
%F TVP_2009_54_1_a9
V. M. Radchenko. Sample Functions of Stochastic Measures and Besov Spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 161-169. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a9/

[1] Besov O. V., “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, Dokl. AN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 455 pp. | MR

[4] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 447 pp. | MR | Zbl

[5] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[6] Roynette B., “Mouvement brownien et espaces de Besov”, Stochastics Stochastics Rep., 43:3–4 (1993), 221–260 | MR | Zbl

[7] Ciesielski Z., Kerkyacharian G., Roynette B., “Quelques espaces fonctionnels associés à des processus gaussiens”, Studia Math., 107:2 (1993), 171–204 | MR | Zbl

[8] Herren V., “Lévy-type processes and Besov spaces”, Potential Anal., 7:3 (1997), 689–704 | DOI | MR | Zbl

[9] Schilling R. L., “On Feller processes with sample paths in Besov spaces”, Math. Ann., 309:4 (1997), 663–675 | DOI | MR | Zbl

[10] Zhang X., “On the quasi-everywhere regularity of the local time of one-dimensional diffusion process in Besov space”, Statist. Probab. Lett., 54:2 (2001), 161–169 | DOI | MR | Zbl

[11] Lorang G., “Régularité Besov des trajectoires du processus intégral de Skorokhod”, Studia Math., 117:3 (1996), 205–223 | MR | Zbl

[12] Nualart D., Ouknine Y., “Besov regularity of stochastic integrals with respect to the fractional Brownian motion with parameter $H>\frac12$”, J. Theoret. Probab., 16:2 (2003), 451–470 | DOI | MR | Zbl

[13] Lakhel H., Ouknine Y., Tudor C. A., “Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion: the singular case”, Stochastics Stochastics Rep., 74:3–4 (2002), 597–615 | DOI | MR | Zbl

[14] Zähle M., “Forward integrals and stochastic differential equations”, Progr. in Probab., 52 (2002), 293–302 | MR | Zbl

[15] Radchenko V. M., “Besov regularity of stochastic measures”, Statist. Probab. Lett., 77:8 (2007), 822–825 | DOI | MR | Zbl

[16] Kamont A., “A discrete characterization of Besov spaces”, Approx. Theory Appl. (N.S.), 13:2 (1997), 63–77 | MR | Zbl

[17] Mémin J., Mishura Yu., Valkeila E., “Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion”, Statist. Probab. Lett., 51:2 (2001), 197–206 | DOI | MR | Zbl

[18] Kwapień S., Woycziński W. A., Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston, 1992, 360 pp. | MR | Zbl

[19] Radchenko V. N., Integraly po obschim sluchainym meram, Trudy Instituta matematiki NAN Ukrainy, 27, In-t matematiki NAN Ukrainy, Kiev, 1999, 196 pp. | Zbl

[20] Radchenko V. N., “Integraly po cluchainym meram i cluchainye lineinye funktsionaly”, Teoriya veroyatn. i ee primen., 36:3 (1991), 594–596 | MR

[21] Talagrand M., “Les mesures vectorielles à valeurs dans $L_0$ sont bornées”, Ann. Sci. Ecole Norm. Sup., 14:4 (1981), 445–452 | MR | Zbl

[22] Radchenko V. M., “Pro dobutok vipadkovoi ta diisnoi mir”, Teor. imovirnost. ta matem. statist., 70 (2004), 144–148 | MR

[23] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985, 368 pp. | MR | Zbl

[24] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986, 320 pp. | MR

[25] Bogachev V. I., Osnovy teorii mery, T. 1, RKhD, M.–Izhevsk, 2006, 584 pp.

[26] Radchenko V. M., “Zalezhni vid parametra integrali za zagalnimi vipadkovimi mirami”, Teor. imovirnost. ta matem. statist., 75 (2006), 140–143 | MR | Zbl

[27] Yadrenko M. I., Spektralnaya teoriya sluchainykh polei, Vyscha shkola, Kiev, 1980, 208 pp. | MR

[28] Buldygin V. V., Kozachenko Yu. V., Metricheskie kharakteristiki sluchainykh velichin i protsessov, TViMS, Kiev, 1998, 289 pp. | Zbl