A New Proof of the Absolute Convergence of the Spitzer Series
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 149-153
Cet article a éte moissonné depuis la source Math-Net.Ru
A new proof of the absolute convergence of the Spitzer series is given which is based on the Berry–Esseen bound. Moreover, the upper bound is deduced for the sum of the series generated by the absolute values of the terms of the Spitzer series.
Keywords:
Spitzer series, Berry–Esseen bound, normal law
Mots-clés : absolute constant, Euler constant.
Mots-clés : absolute constant, Euler constant.
@article{TVP_2009_54_1_a7,
author = {S. V. Nagaev},
title = {A {New} {Proof} of the {Absolute} {Convergence} of the {Spitzer} {Series}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {149--153},
year = {2009},
volume = {54},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a7/}
}
S. V. Nagaev. A New Proof of the Absolute Convergence of the Spitzer Series. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 149-153. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a7/
[1] Rosén B., “On the asymptotic distribution of sums of independent identically distributed random variables”, Ark. Mat., 4:4 (1962), 323–332 | DOI | MR | Zbl
[2] Shevtsova I. G., “Utochnenie verkhnei otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena”, Teoriya veroyatn. i ee primen., 51:3 (2006), 622–626 | MR
[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963, 1108 pp. | MR