Global properties of transition pProbabilities of singular diffusions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 116-148
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove global Sobolev regularity and pointwise upper bounds for transition densities associated with second order differential operators in $R^N$ with unbounded drift. As an application, we obtain sufficient conditions implying the differentiability of the associated transition semigroup on the space of bounded and continuous functions on $R^N$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
transition semigroups, transition probabilities, parabolic regularity.
                    
                    
                    
                  
                
                
                @article{TVP_2009_54_1_a6,
     author = {G. Metafune and D. Pallara and A. Rhandi},
     title = {Global properties of transition {pProbabilities} of singular diffusions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {116--148},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a6/}
}
                      
                      
                    TY - JOUR AU - G. Metafune AU - D. Pallara AU - A. Rhandi TI - Global properties of transition pProbabilities of singular diffusions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 116 EP - 148 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a6/ LA - en ID - TVP_2009_54_1_a6 ER -
G. Metafune; D. Pallara; A. Rhandi. Global properties of transition pProbabilities of singular diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 116-148. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a6/
