Moderate Deviations for a Diffusion-Type Process in a Random Environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 39-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\sigma(u)$, $u\in\mathbf{R}$, be an ergodic stationary Markov chain, taking a finite number of values $a_1,\ldots,a_m$, and let $b(u)=g(\sigma(u))$, where $g$ is a bounded and measurable function. We consider the diffusion-type process $$ dX^\varepsilon_t = b\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dt+\varepsilon^\kappa\sigma\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dB_t,\qquad t\le T, $$ subject to $X^\varepsilon_0=x_0$, where $\varepsilon$ is a small positive parameter, $B_t$ is a Brownian motion, independent of $\sigma$, and $\kappa>0$ is a fixed constant. We show that for $\kappa<\frac16$, the family $\{X^\varepsilon_t\}_{\varepsilon\to 0}$ satisfies the large deviation principle (LDP) of Freidlin–Wentzell type with the constant drift $\mathbf{b}$ and the diffusion $\mathbf{a}$, given by $$ \mathbf{b}=\sum_{i=1}^m\frac{g(a_i)}{a^2_i}\,\pi_i\Big/ \sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i, \quad \mathbf{a}=1\Big/\sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i, $$ where $\{\pi_1,\ldots,\pi_m\}$ is the invariant distribution of the chain $\sigma(u)$.
Keywords: random environment, moderate deviations, Freidlin–Wentzell large deviation principle.
Mots-clés : diffusion-type processes
@article{TVP_2009_54_1_a2,
     author = {R. Sh. Liptser and P. Chigansky},
     title = {Moderate {Deviations} for a {Diffusion-Type} {Process} in a {Random} {Environment}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {39--62},
     year = {2009},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/}
}
TY  - JOUR
AU  - R. Sh. Liptser
AU  - P. Chigansky
TI  - Moderate Deviations for a Diffusion-Type Process in a Random Environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 39
EP  - 62
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/
LA  - ru
ID  - TVP_2009_54_1_a2
ER  - 
%0 Journal Article
%A R. Sh. Liptser
%A P. Chigansky
%T Moderate Deviations for a Diffusion-Type Process in a Random Environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 39-62
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/
%G ru
%F TVP_2009_54_1_a2
R. Sh. Liptser; P. Chigansky. Moderate Deviations for a Diffusion-Type Process in a Random Environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 39-62. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/

[1] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl

[2] Brox T., “A one-dimensional diffusion process in a Wiener medium”, Ann. Probab., 14:4 (1986), 1206–1218 | DOI | MR | Zbl

[3] Dupuis P., Ellis R. S., A Weak Convergence Approach to the Theory of Large Deviations, Wiley, New York, 1997, 479 pp. | MR | Zbl

[4] Freidlin M. I., Sowers R. B., “A comparison of homogenization and large deviations, with applications to wavefront propagation”, Stochastic Process. Appl., 82:1 (1999), 23–52 | DOI | MR | Zbl

[5] Venttsel A. D., Freidlin M. I., Fluktuatsiya v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp. | MR | Zbl

[6] Gertner Yu., Freidlin M. I., “O rasprostranenii kontsentratsionnykh voln v periodicheskikh i sluchainykh sredakh”, Dokl. AN SSSR, 249:3 (1979), 521–525 | MR

[7] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, t. 1, 2, Nauka, M., 1994, 542 pp.; 366 pp.

[8] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977, 399 pp. | MR

[9] Liptser R. S., Spokoiny V., “Moderate deviations type evaluation for integral functionals of diffusion processes”, Electron. J. Probab., 4:17 (1999), 1–25 | MR

[10] Liptser R. S., Pukhalskii A. A., “Limit theorems on large deviations for semimartingales”, Stochastics Stochastics Rep., 38:4 (1992), 201–249 | MR | Zbl

[11] Liptser R. S., Shiryaev A. N., Statistics of Random Processes. I. General theory, Springer-Verlag, Berlin, 2001, 427 pp. | MR

[12] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986, 512 pp. | MR | Zbl

[13] Puhalskii A. A., “Large deviations of semimartingales via convergence of the predictable characteristics”, Stochastics Stochastics Rep., 49:1–2 (1994), 27–85 | MR | Zbl

[14] Puhalskii A. A., Large Deviations andIdempotent Pobability, Chapman Hall/CRC, Boca Raton, 2001, 500 pp. | MR | Zbl

[15] Schumacher S., “Diffusions with random coefficients”, Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984), Contemp. Math., 41, Amer. Math. Soc., Providence, 1985, 351–356 | MR