Moderate Deviations for a Diffusion-Type Process in a Random Environment
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 39-62
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\sigma(u)$, $u\in\mathbf{R}$, be an ergodic stationary Markov chain, taking a finite number of values $a_1,\ldots,a_m$, and let $b(u)=g(\sigma(u))$, where $g$ is a bounded and measurable function. We consider the diffusion-type process 
$$
dX^\varepsilon_t = b\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dt+\varepsilon^\kappa\sigma\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dB_t,\qquad t\le T,
$$ 
subject to $X^\varepsilon_0=x_0$, where $\varepsilon$ is a small positive parameter, $B_t$ is a Brownian motion, independent of $\sigma$, and $\kappa>0$ is a fixed constant. 
We show that for $\kappa\frac16$, the family $\{X^\varepsilon_t\}_{\varepsilon\to 0}$ satisfies the large deviation principle (LDP) of Freidlin–Wentzell type with the constant drift $\mathbf{b}$ and the diffusion $\mathbf{a}$, given by 
$$
\mathbf{b}=\sum_{i=1}^m\frac{g(a_i)}{a^2_i}\,\pi_i\Big/ \sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i, \quad \mathbf{a}=1\Big/\sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i, 
$$ 
where $\{\pi_1,\ldots,\pi_m\}$ is the invariant distribution of the chain $\sigma(u)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random environment, moderate deviations, Freidlin–Wentzell large deviation principle.
Mots-clés : diffusion-type processes
                    
                  
                
                
                Mots-clés : diffusion-type processes
@article{TVP_2009_54_1_a2,
     author = {R. Sh. Liptser and P. Chigansky},
     title = {Moderate {Deviations} for a {Diffusion-Type} {Process} in a {Random} {Environment}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {39--62},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/}
}
                      
                      
                    TY - JOUR AU - R. Sh. Liptser AU - P. Chigansky TI - Moderate Deviations for a Diffusion-Type Process in a Random Environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 39 EP - 62 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/ LA - ru ID - TVP_2009_54_1_a2 ER -
R. Sh. Liptser; P. Chigansky. Moderate Deviations for a Diffusion-Type Process in a Random Environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 39-62. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a2/
