The Rate of Convergence of Spectra of Sample Covariance Matrices
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 202-213

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Kolmogorov distance between the spectral distribution function of a random covariance matrix $p^{-1}XX^T$, where $X$ is an $n\times p$ matrix with independent entries and the distribution function of the Marchenko–Pastur law is of order $O(n^{-1/2})$. The bounds hold uniformly for any $p$, including $p/n$ equal or close to $1$.
Keywords: sample covariance matrix, spectral distribution function.
Mots-clés : Marchenko–Pastur distribution
@article{TVP_2009_54_1_a13,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {The {Rate} of {Convergence} of {Spectra} of {Sample} {Covariance} {Matrices}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {202--213},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - The Rate of Convergence of Spectra of Sample Covariance Matrices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 202
EP  - 213
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/
LA  - en
ID  - TVP_2009_54_1_a13
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%T The Rate of Convergence of Spectra of Sample Covariance Matrices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 202-213
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/
%G en
%F TVP_2009_54_1_a13
F. Götze; A. N. Tikhomirov. The Rate of Convergence of Spectra of Sample Covariance Matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 202-213. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/