The Rate of Convergence of Spectra of Sample Covariance Matrices
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 202-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the Kolmogorov distance between the spectral distribution function of a random covariance matrix $p^{-1}XX^T$, where $X$ is an $n\times p$ matrix with independent entries and the distribution function of the Marchenko–Pastur law is of order $O(n^{-1/2})$. The bounds hold uniformly for any $p$, including $p/n$ equal or close to $1$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
sample covariance matrix, spectral distribution function.
Mots-clés : Marchenko–Pastur distribution
                    
                  
                
                
                Mots-clés : Marchenko–Pastur distribution
@article{TVP_2009_54_1_a13,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {The {Rate} of {Convergence} of {Spectra} of {Sample} {Covariance} {Matrices}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {202--213},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/}
}
                      
                      
                    TY - JOUR AU - F. Götze AU - A. N. Tikhomirov TI - The Rate of Convergence of Spectra of Sample Covariance Matrices JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 202 EP - 213 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/ LA - en ID - TVP_2009_54_1_a13 ER -
F. Götze; A. N. Tikhomirov. The Rate of Convergence of Spectra of Sample Covariance Matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 202-213. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/
