The Rate of Convergence of Spectra of Sample Covariance Matrices
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 202-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the Kolmogorov distance between the spectral distribution function of a random covariance matrix $p^{-1}XX^T$, where $X$ is an $n\times p$ matrix with independent entries and the distribution function of the Marchenko–Pastur law is of order $O(n^{-1/2})$. The bounds hold uniformly for any $p$, including $p/n$ equal or close to $1$.
Keywords: sample covariance matrix, spectral distribution function.
Mots-clés : Marchenko–Pastur distribution
@article{TVP_2009_54_1_a13,
     author = {F. G\"otze and A. N. Tikhomirov},
     title = {The {Rate} of {Convergence} of {Spectra} of {Sample} {Covariance} {Matrices}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {202--213},
     year = {2009},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
TI  - The Rate of Convergence of Spectra of Sample Covariance Matrices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 202
EP  - 213
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/
LA  - en
ID  - TVP_2009_54_1_a13
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%T The Rate of Convergence of Spectra of Sample Covariance Matrices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 202-213
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/
%G en
%F TVP_2009_54_1_a13
F. Götze; A. N. Tikhomirov. The Rate of Convergence of Spectra of Sample Covariance Matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 202-213. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a13/

[1] Bai Z. D., Miao B., Yao J.-F., “Convergence rates of spectral distributions of large sample covariance matrices”, SIAM J. Matrix Anal. Appl., 25:1 (2003), 105–127 | DOI | MR | Zbl

[2] Bai Z. D., Silverstein J., Spectral Analysis of Large Dimensional Random Matrices, Math. Monograph Ser., 2, Sciences Press, Beijing, 2006

[3] Götze F., Tikhomirov A. N., “The rate of convergence for spectra of GUE and LUE matrix ensembles”, Cent. Eur. J. Math., 3:4 (2005), 666–704 | DOI | MR | Zbl

[4] Götze F., Tikhomirov A. N., “Rate of convergence to the semi-circular law”, Probab. Theory Related Fields, 127:2 (2003), 228–276 | DOI | MR | Zbl

[5] Götze F., Tikhomirov A. N., “Rate of convergence in probability to the Marchenko–Pastur law”, Bernoulli, 10:3 (2004), 503–548 | DOI | MR | Zbl

[6] Hall P., Heyde C. C., Martingale Limit Theory and Its Application, Academic Press, New York–London, 1980, 308 pp. | MR

[7] Horn R. A., Johnson Ch. R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991, 561 pp. | MR

[8] Marchenko V. A., Pastur L. A., “Raspredelenie sobstvennykh znachenii v nekotorykh ansamblyakh sluchainykh matrits”, Matem. sb., 72:4 (1967), 507–536 | Zbl

[9] Mehta M. L., Random Matrices, Academic Press, Boston, 1991, 562 pp. | MR | Zbl

[10] Pastur L. A., “Spektry sluchainykh samosopryazhennykh operatorov”, Uspekhi matem. nauk, 28:1 (1973), 3–64 | MR | Zbl

[11] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR