@article{TVP_2009_54_1_a11,
author = {A. V. Syulyukin},
title = {On {Asymptotic} {Bergstr\"om{\textendash}Chebyshev} {Expansions}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {181--190},
year = {2009},
volume = {54},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a11/}
}
A. V. Syulyukin. On Asymptotic Bergström–Chebyshev Expansions. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 181-190. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a11/
[1] Zolotarev V. M., “Analog asimptoticheskogo razlozheniya Edzhvorta–Kramera dlya sluchaya sblizheniya s ustoichivymi zakonami raspredeleniya”, Trudy VI Vsesoyuznogo soveschaniya po teorii veroyatnostei i matematicheskoi statistike, Gos. izd-vo polit. i nauch. lit. LitSSR, Vilnyus, 1962, 49–50 | MR
[2] Kendall M., Styuart A., Teoriya raspredelenii, Nauka, M., 1966, 587 pp. | MR | Zbl
[3] Kondratenko A. E., Senatov V. V., “Ob otsenke tochnosti asimptoticheskikh razlozhenii v TsPT”, Dokl. RAN, 378:6 (2001), 748–750 | MR | Zbl
[4] Nagaev S. V., Chebotarev V. I., “Ob asimptoticheskom razlozhenii tipa Bergstrema v gilbertovom prostranstve”, Trudy Instituta matematiki SO AN SSSR, 13, 1989, 66–77 | MR | Zbl
[5] Senatov V. V., “Ob odnom mnogomernom analoge razlozheniya Chebysheva”, Teoriya veroyatn. i ee primen., 52:3 (2007), 603–610
[6] Senatov V. V., Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi Dom Librokom, M., 2009, 352 pp.
[7] Bergström H., “On asymptotic expansions of probability functions”, Skand. Actuarietidskr., 34:1–2 (1951), 1–34 | MR | Zbl
[8] Dobrić V., Ghosh B. K., “Some analogs of the Berry–Esseen bound for first-order Chebyshev–Edgeworth expansions”, Statist. Decisions, 14:4 (1996), 383–404 | MR | Zbl
[9] Senatov V. V., “On estimation of the approximation error in asymptotic expansions in the central limit theorem”, J. Math. Sci., 112:2 (2002), 4174–4193 | DOI | MR
[10] Shimizu R., “On the remainded term for the central limit theorem”, Ann. Inst. Statist. Math., 26:1 (1974), 195–201 | DOI | MR | Zbl