On Asymptotic Bergström–Chebyshev Expansions
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 181-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers asymptotic expansions, which define the central limit theorem precisely and are called Bergström–Chebyshev expansions. For the given expansions we obtain explicit estimators of remainders.
Keywords: central limit theorem, asymptotic expansions, approximation exactness.
@article{TVP_2009_54_1_a11,
     author = {A. V. Syulyukin},
     title = {On {Asymptotic} {Bergstr\"om{\textendash}Chebyshev} {Expansions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {181--190},
     year = {2009},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a11/}
}
TY  - JOUR
AU  - A. V. Syulyukin
TI  - On Asymptotic Bergström–Chebyshev Expansions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 181
EP  - 190
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a11/
LA  - ru
ID  - TVP_2009_54_1_a11
ER  - 
%0 Journal Article
%A A. V. Syulyukin
%T On Asymptotic Bergström–Chebyshev Expansions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 181-190
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a11/
%G ru
%F TVP_2009_54_1_a11
A. V. Syulyukin. On Asymptotic Bergström–Chebyshev Expansions. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 181-190. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a11/

[1] Zolotarev V. M., “Analog asimptoticheskogo razlozheniya Edzhvorta–Kramera dlya sluchaya sblizheniya s ustoichivymi zakonami raspredeleniya”, Trudy VI Vsesoyuznogo soveschaniya po teorii veroyatnostei i matematicheskoi statistike, Gos. izd-vo polit. i nauch. lit. LitSSR, Vilnyus, 1962, 49–50 | MR

[2] Kendall M., Styuart A., Teoriya raspredelenii, Nauka, M., 1966, 587 pp. | MR | Zbl

[3] Kondratenko A. E., Senatov V. V., “Ob otsenke tochnosti asimptoticheskikh razlozhenii v TsPT”, Dokl. RAN, 378:6 (2001), 748–750 | MR | Zbl

[4] Nagaev S. V., Chebotarev V. I., “Ob asimptoticheskom razlozhenii tipa Bergstrema v gilbertovom prostranstve”, Trudy Instituta matematiki SO AN SSSR, 13, 1989, 66–77 | MR | Zbl

[5] Senatov V. V., “Ob odnom mnogomernom analoge razlozheniya Chebysheva”, Teoriya veroyatn. i ee primen., 52:3 (2007), 603–610

[6] Senatov V. V., Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi Dom Librokom, M., 2009, 352 pp.

[7] Bergström H., “On asymptotic expansions of probability functions”, Skand. Actuarietidskr., 34:1–2 (1951), 1–34 | MR | Zbl

[8] Dobrić V., Ghosh B. K., “Some analogs of the Berry–Esseen bound for first-order Chebyshev–Edgeworth expansions”, Statist. Decisions, 14:4 (1996), 383–404 | MR | Zbl

[9] Senatov V. V., “On estimation of the approximation error in asymptotic expansions in the central limit theorem”, J. Math. Sci., 112:2 (2002), 4174–4193 | DOI | MR

[10] Shimizu R., “On the remainded term for the central limit theorem”, Ann. Inst. Statist. Math., 26:1 (1974), 195–201 | DOI | MR | Zbl