Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 170-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A vector field is observed at random locations with additive noise. The corresponding integral curve is to be estimated based on the data. The focus of the current paper is to obtain lower bounds for the functions of deviations between true and estimated integral curves. In particular, we show that the estimation procedure in [Koltchinskii, Sakhanenko, and Cai, Ann. Statist., 35 (2007), pp. 1576–1607] yields estimates, which have the optimal rate of convergence in a minimax sense. Overall, this work is motivated by diffusion tensor imaging, which is a modern brain imaging technique. The integral curves are used to model axonal fibers in the brain. In medical research, it is important to estimate and map these fibers. The paper addresses statistical aspects pertinent to such an estimation problem.
Keywords: local asymptotic normality, optimal rate of convergence, diffusion tensor imaging.
@article{TVP_2009_54_1_a10,
     author = {L. A. Sakhanenko},
     title = {Lower {Bounds} for {Accuracy} of {Estimation} in {Diffusion} {Tensor} {Imaging}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {170--180},
     year = {2009},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a10/}
}
TY  - JOUR
AU  - L. A. Sakhanenko
TI  - Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 170
EP  - 180
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a10/
LA  - ru
ID  - TVP_2009_54_1_a10
ER  - 
%0 Journal Article
%A L. A. Sakhanenko
%T Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 170-180
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a10/
%G ru
%F TVP_2009_54_1_a10
L. A. Sakhanenko. Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 170-180. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a10/

[1] Hájek J., “Local asymptotic minimax and admissibility in estimation”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, v. 1, Univ. California Press, Berkeley, 1972, 175–194 | MR | Zbl

[2] Hille E., Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, 1969, 723 pp. | MR | Zbl

[3] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 527 pp. | MR

[4] Koltchinskii V., Sakhanenko L., Cai S., “Integral curves of noisy vector fields and statistical problems in diffusion tensor imaging: nonparametric kernel estimation and hypotheses testing”, Ann. Statist., 35:4 (2997), 1576–1607 | DOI | MR

[5] Le Bihan D., Mangin J.-F., Poupon C., Clark C., Pappata S., Molko N., Chabriat H., “Diffusion tensor imaging: concepts and applications”, J. Magnetic Resonance Imaging, 13 (2001), 534–546 | DOI

[6] Mori S., Barker P. B., “Diffusion magnetic resonance imaging: its principle and applications”, The Anatomical Record, 257 (1999), 102–109 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI