Bounds and Asymptotics for the Rate of Convergence of Birth-Death Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 18-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first part of the paper is a review; it describes the proposed approach and gives the general basis of the method constructed by one of the authors in the 1990's in order to obtain estimates and explicit representations for the rates of convergence for birth-death processes. The second part of the paper presents new results obtained with the described method, which has been applied to specific classes of birth-death processes related to mean-field models and the $M/M/N/N+R$ queueing system related to the asymptotic behavior of the rate of convergence in the case when the number of states of the process tends to infinity.
Keywords: rate of convergence, birth-death processes, mean-field models, Charlier polynomial, queueing system.
@article{TVP_2009_54_1_a1,
     author = {E. van Doorn and A. I. Zeifman and T. L. Panfilova},
     title = {Bounds and {Asymptotics} for the {Rate} of {Convergence} of {Birth-Death} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {18--38},
     year = {2009},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a1/}
}
TY  - JOUR
AU  - E. van Doorn
AU  - A. I. Zeifman
AU  - T. L. Panfilova
TI  - Bounds and Asymptotics for the Rate of Convergence of Birth-Death Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 18
EP  - 38
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a1/
LA  - ru
ID  - TVP_2009_54_1_a1
ER  - 
%0 Journal Article
%A E. van Doorn
%A A. I. Zeifman
%A T. L. Panfilova
%T Bounds and Asymptotics for the Rate of Convergence of Birth-Death Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 18-38
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a1/
%G ru
%F TVP_2009_54_1_a1
E. van Doorn; A. I. Zeifman; T. L. Panfilova. Bounds and Asymptotics for the Rate of Convergence of Birth-Death Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 18-38. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a1/

[1] Blanc J. P. C., van Doorn E. A., “Relaxation times for queueing systems”, Mathematics and Computer Science (Amsterdam, 1983), CWI Monogr., 1, eds. J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, North-Holland, Amsterdam, 1986, 139–162 | MR

[2] Chen M.-F., “Estimation of spectral gap for Markov chains”, Acta Math. Sinica (N.S.), 12:4 (1996), 337–360 | MR | Zbl

[3] Chen M.-F., “Variational formulas and approximation theorems for the first eigenvalue in dimension one”, Sci. China Ser. A, 44:4 (2001), 409–418 | DOI | MR | Zbl

[4] Chen M.-F., Eigenvalues, Inequalities, and Ergodic Theory, Springer-Verlag, London, 2005, 228 pp. | MR

[5] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978, 249 pp. | MR | Zbl

[6] Dahlquist G., Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Inaugural dissertation (University of Stockholm), Almqvist Wiksells Boktryckeri AB, Uppsala, 1958, 87 pp. ; Reprinted in: Transactions of the Royal Institute of Technology, 130, Stockholm, 1959 | MR | MR | Zbl

[7] van Doorn E. A., “Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process”, Adv. Appl. Probab., 17:3 (1985), 514–530 | DOI | MR | Zbl

[8] van Doorn E. A., “Representations for the rate of convergence of birth-death processes”, Theory Probab. Math. Statist., 65 (2002), 37–43 | MR

[9] van Doorn E. A., van Foreest N. D., Zeifman A. I., “Representations for the extreme zeros of orthogonal polynomials”, J. Comput. Appl. Math. (to appear)

[10] Fricker C., Robert P., Tibi D., “On the rates of convergence of Erlang's model”, J. Appl. Probab., 36:4 (1999), 1167–1184 | DOI | MR | Zbl

[11] Gnedenko B. V., Makarov I. P., “Svoistva reshenii zadachi s poteryami v sluchae periodicheskikh intensivnostei”, Differents. uravneniya, 7 (1971), 1696–1698 | MR | Zbl

[12] Granovsky B. L., Zeifman A. I., “The decay function of nonhomogeneous birth-death processes, with application to mean-field models”, Stochastic Process. Appl., 72:1 (1997), 105–120 | DOI | MR | Zbl

[13] Granovsky B. L., Zeifman A. I., “The $N$-limit of spectral gap of a class of birth-death Markov chains”, Appl. Stoch. Models Bus. Ind., 16:4 (2000), 235–248 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] Granovsky B. L., Zeifman A. I., “Nonstationary queues: estimation of the rate of convergence”, Queueing Syst., 46:3 (2004), 363–388 | DOI | MR | Zbl

[15] Granovskii B. L., Zeifman A. I., “O nizhnei granitse spektra dlya nekotorykh modelei srednego polya”, Teoriya veroyatn. i ee primen., 49:1 (2004), 164–171 | MR

[16] Karlin S., McGregor J. L., “The differential equations of birth-and-death processes, and the Stieltjes moment problem”, Trans. Amer. Math. Soc., 85 (1957), 489–546 | DOI | MR | Zbl

[17] Karlin S., McGregor J. L., “Ehrenfest urn models”, J. Appl. Probab., 2 (1965), 352–376 | DOI | MR | Zbl

[18] Kijima M., “Evaluation of the decay parameter for some specialized birth-death processes”, J. Appl. Probab., 29:4 (1992), 781–791 | DOI | MR | Zbl

[19] Krasikov I., “Bounds for zeros of the Charlier polynomials”, Methods Appl. Anal., 9:4 (2002), 599–610 | MR | Zbl

[20] Lozinskii S. M., “Otsenka pogreshnosti chislennogo integrirovaniya obyknovennogo differentsialnogo uravneniya, I”, Izv. vuzov. Matem., 1958, no. 5, 52–90 ; 1959, No 5, 222 | MR

[21] MacWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, Part II, North-Holland, Amsterdam, 1977, 392 pp. | Zbl

[22] Meyer C. D., Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2001, 718 pp. ; Updates available on http://www.matrixanalysis.com | MR

[23] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp. | MR

[24] Söderlind G., “The logarithmic norm. History and modern theory”, BIT. Numerical Mathematics, 46:3 (2006), 631–652 | DOI | MR | Zbl

[25] Ström T., “On logarithmic norms”, SIAM J. Numer. Anal., 12:5 (1975), 741–753 | DOI | MR | Zbl

[26] Takács L., Introduction to the Theory of Queues, Oxford Univ. Press, New York, 1962, 268 pp. | MR | Zbl

[27] Varga R. S., Matrix Iterative Analysis, Springer-Verlag, Berlin, 2000, 358 pp. | MR

[28] Voit M., “A note on the rate of convergence to equilibrium for Erlang's model in the subcritical case”, J. Appl. Probab., 37:3 (2000), 918–923 | DOI | MR | Zbl

[29] Zeifman A. I., “Some estimates of the rate of convergence for birth and death processes”, J. Appl. Probab., 28:2 (1991), 268–277 | DOI | MR | Zbl

[30] Zeifman A. I., “On the estimation of probabilities for birth and death processes”, J. Appl. Probab., 32:3 (1995), 623–634 | DOI | MR | Zbl

[31] Zeifman A. I., “Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes”, Stochastic Process. Appl., 59:1 (1995), 157–173 | DOI | MR | Zbl

[32] Zeifman A. I., Bening V. E., Sokolov I. A., Markovskie tsepi i modeli s nepreryvnym vremenem, ELEKS-KM, M., 2008