Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A conditional invariance principle is established for the critical branching process in a random environment attaining a high level, and finite-dimensional distributions of the limiting process are found.
Keywords: branching process in a random environment, conditional invariance principles, Brownian excursion, Brownian meander.
@article{TVP_2009_54_1_a0,
     author = {V. I. Afanasyev},
     title = {Invariance {Principle} for the {Critical} {Branching} {Process} in a {Random} {Environment} {Attaining} a {High} {Level}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--17},
     year = {2009},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 3
EP  - 17
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a0/
LA  - ru
ID  - TVP_2009_54_1_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 3-17
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a0/
%G ru
%F TVP_2009_54_1_a0
V. I. Afanasyev. Invariance Principle for the Critical Branching Process in a Random Environment Attaining a High Level. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a0/

[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Afanasev V. I., “Zakon arksinusa dlya vetvyaschikhsya protsessov v sluchainoi srede i protsessov Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 51:3 (2006), 449–464 | MR

[3] Afanasev V. I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskretn. matem., 11:4 (1999), 33–47 | MR

[4] Durrett R. T., Iglehart D. L., “Functionals of Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 130–135 | DOI | MR | Zbl

[5] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[6] Iglehart D. L., “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608–619 | DOI | MR | Zbl

[7] Bolthausen E., “On a functional central limit theorem for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485 | DOI | MR | Zbl

[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984, 528 pp. | MR

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984, 752 pp. | MR