Stochastic Micromodel of the Couette Flow
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 798-809 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Markov exclusion process for a particle system with a local interaction in the integer strip. This process models the exchange of velocities and particle-hole exchange of the liquid molecules. It is shown that the mean velocity profile corresponds to the behavior which is characteristic for incompressible viscous liquid. We prove the existence of phase transition between laminar and turbulent profiles.
Mots-clés : Couette flow
Keywords: Markov processes with a local interaction, scaling, hydrodynamics.
@article{TVP_2008_53_4_a9,
     author = {V. A. Malyshev and A. D. Manita},
     title = {Stochastic {Micromodel} of the {Couette} {Flow}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {798--809},
     year = {2008},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a9/}
}
TY  - JOUR
AU  - V. A. Malyshev
AU  - A. D. Manita
TI  - Stochastic Micromodel of the Couette Flow
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 798
EP  - 809
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a9/
LA  - ru
ID  - TVP_2008_53_4_a9
ER  - 
%0 Journal Article
%A V. A. Malyshev
%A A. D. Manita
%T Stochastic Micromodel of the Couette Flow
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 798-809
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a9/
%G ru
%F TVP_2008_53_4_a9
V. A. Malyshev; A. D. Manita. Stochastic Micromodel of the Couette Flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 798-809. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a9/

[1] Strannye attraktory, Matematika. Novoe v zarubezhnoi nauke, 22, Mir, M., 1981 | MR

[2] Chorin A. J., Marsden J. E., A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1993, 169 pp. | Zbl

[3] Marchioro C., Pulvirenti M., Mathematical Theory of Incompressible Non Viscous Fluids, Springer-Verlag, New York, 1994, 283 pp. | MR

[4] Shiryaev A., On the classical, statistical, and stochastic approaches to the hydrodynamic turbulence, Research Report No 2, Thiele Centre for Applied Mathematics in Natural Science, Aarhus, 2007

[5] Kolmogorov A. N., “Matematicheskie modeli turbulentnogo dvizheniya neszhimaemoi vyazkoi zhidkosti”, Uspekhi matem. nauk, 59:1 (2004), 5–10 | MR

[6] Meshalkin L. D., Sinai Ya. G., “Issledovanie ustoichivosti statsionarnogo resheniya odnoi sistemy uravnenii ploskogo dvizheniya neszhimaemoi vyazkoi zhidkosti”, Prikl. matem. i mekh., 25 (1965), 1140–1143

[7] Landau L. D., Akhiezer A. I., Lifshits E. M., Kurs obschei fiziki. Mekhanika i molekulyarnaya fizika, Nauka, M., 1966, 384 pp.

[8] Liggett T., Markovskie protsessy s lokalnym vzaimodeistviem, Mir, M., 1989, 550 pp. | MR | Zbl

[9] Kipnis C., Landim C., Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin, 1999, 442 pp. | MR

[10] Spohn H., Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991, 342 pp.

[11] Esposito R., Marra R., Yau H. T., “Navier–Stokes equations for stochastic particle systems on the lattice”, Comm. Math. Phys., 182:2 (1996), 395–456 | DOI | MR

[12] Ignatyuk I. A., Malyshev V. A., Molchanov S. A., “Moment-closed processes with local interaction”, Selecta Math. Soviet., 8:4 (1989), 351–384 | MR | Zbl

[13] Méléard S., “Monte-Carlo approximations for 2d Navier–Stokes equations with measure initial data”, Probab. Theory Related Fields, 121:3 (2001), 367–388 | DOI | MR | Zbl

[14] Fontbona J., “A probabilistic interpretation and stochastic particle approximations of the 3-dimensional Navier–Stokes equations”, Probab. Theory Related Fields, 136:1 (2006), 102–156 | DOI | MR | Zbl

[15] Golinelli O., Mallick K., “Derivation of a matrix product representation for the asymmetric exclusion process from algebraic Bethe ansatz”, J. Phys. A, 39:34 (2006), 10647–10658 | DOI | MR | Zbl

[16] Derrida B., Lebowitz J. L., Speer E. R., “Entropy of open lattice systems”, J. Statist. Phys., 126:4–5 (2006), 1083–1108 | MR