Small Deviations of Smooth Stationary Gaussian Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 788-798 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the small deviation probabilities of a class of very smooth stationary Gaussian processes playing an important role in Bayesian statistical inference. Our calculations are based on the appropriate modification of the entropy method due to Kuelbs, Li, and Linde as well as on classical results about the entropy of classes of analytic functions. They also involve Tsirelson's upper bound for small deviations and shed some light on the limits of sharpness for that estimate.
Keywords: Gaussian processes, small deviations, spectral density, stationary processes.
@article{TVP_2008_53_4_a8,
     author = {F. Aurzada and I. A. Ibragimov and M. A. Lifshits and H. J. van Zanden},
     title = {Small {Deviations} of {Smooth} {Stationary} {Gaussian} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {788--798},
     year = {2008},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a8/}
}
TY  - JOUR
AU  - F. Aurzada
AU  - I. A. Ibragimov
AU  - M. A. Lifshits
AU  - H. J. van Zanden
TI  - Small Deviations of Smooth Stationary Gaussian Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 788
EP  - 798
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a8/
LA  - ru
ID  - TVP_2008_53_4_a8
ER  - 
%0 Journal Article
%A F. Aurzada
%A I. A. Ibragimov
%A M. A. Lifshits
%A H. J. van Zanden
%T Small Deviations of Smooth Stationary Gaussian Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 788-798
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a8/
%G ru
%F TVP_2008_53_4_a8
F. Aurzada; I. A. Ibragimov; M. A. Lifshits; H. J. van Zanden. Small Deviations of Smooth Stationary Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 788-798. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a8/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 407 pp. | MR

[2] Aurzada F., “A short note on small deviations of sequences of i.i.d. random variables with exponentially decreasing weights”, Statist. Probab. Lett., 78 (2008), 2300–2307 | DOI | MR | Zbl

[3] Borovkov A. A., Ruzankin P. S., “Small deviations of series of independent positive random variables with weights close to exponential”, Siberian Adv. Math., 18:3 (2008), 163–175 | DOI | MR

[4] Dunker T., Lifshits M. A., Linde W., “Small deviations probabilities of sums of independent random variables”, High Dimensional Probability, Birkhäuser, Basel, 1998, 59–74 | MR | Zbl

[5] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR

[6] Kuelbs J., Li W. V., “Metric entropy and the small ball problem for Gaussian measures”, J. Funct. Anal., 116:1 (1993), 133–157 | DOI | MR | Zbl

[7] Li W. V., Linde W., “Approximation, metric entropy and small ball estimates for Gaussian measures”, Ann. Probab., 27:3 (1999), 1556–1578 | DOI | MR | Zbl

[8] Li W. V., Shao Q.-M., “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, North-Holland, Amsterdam, 2001, 533–597 | MR | Zbl

[9] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 246 pp. | Zbl

[10] Lifshits M. A., Bibliography on small deviation probabilities http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html

[11] Lifshits M. A., Tsirelson B. S., “Malye ukloneniya gaussovskikh polei”, Teoriya veroyatn. i ee primen., 31:3 (1986), 632–633 | MR

[12] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964, 267 pp. | MR

[13] Rasmussen C. E., Williams C. K. I., Gaussian Processes for Machine Learning, MIT Press, Cambridge, 2006, 248 pp. | MR | Zbl

[14] van der Vaart A., van Zanten J.H., “Bayesian inference with rescaled Gaussian process priors”, Electron. J. Statist., 1 (2007), 433–448 | DOI | MR | Zbl

[15] Widom H., “Asymptotic behavior of the eigenvalues of certain integral equations. II”, Arch. Ration. Mech. Anal., 17 (1964), 215–229 | DOI | MR | Zbl