Equivalent supermartingale densities and measures in discrete time infinite horizon market models
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 704-731 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a general discrete time infinite horizon securities market model in which the set $\mathscr{W}$ of stochastic wealth processes, corresponding to investment strategies, is subject to a number of axioms with financial interpretation. We obtain criteria for the existence of equivalent supermartingale densities and measures for the set $\mathscr{W}_+$ of nonnegative elements of $\mathscr{W}$. These criteria are expressed in terms of various no-arbitrage conditions. The most complete results are formulated for Fatou closed sets $\mathscr{W}$. This closedness condition is satisfied by the traditional market model with a finite number of basic assets. A feature of the paper consists of applying the Kreps–Yan theorem for the space $L ^\infty $ with the norm topology. With the use of this theorem we establish the existence of an equivalent supermartingale density under the absence of free lunch with vanishing risk condition for strategies with finite horizons.
Keywords: supermartingale densities, no-arbitrage criteria, Kreps–Yan theorem, free lunch, fork-convexity, change of numй
Mots-clés : raire.
@article{TVP_2008_53_4_a3,
     author = {D. B. Rokhlin},
     title = {Equivalent supermartingale densities and measures in discrete time infinite horizon market models},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {704--731},
     year = {2008},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - Equivalent supermartingale densities and measures in discrete time infinite horizon market models
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 704
EP  - 731
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/
LA  - ru
ID  - TVP_2008_53_4_a3
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T Equivalent supermartingale densities and measures in discrete time infinite horizon market models
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 704-731
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/
%G ru
%F TVP_2008_53_4_a3
D. B. Rokhlin. Equivalent supermartingale densities and measures in discrete time infinite horizon market models. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 704-731. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/

[1] Becherer D., “The numéraire portfolio for unbounded semimartingales”, Finance Stoch., 5:3 (2001), 327–341 | DOI | MR | Zbl

[2] Bogachev V. I., Osnovy teorii mery, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2003, 544 pp.

[3] Brannath W., Schachermayer W., “A bipolar theorem for $L^0_+(\Omega,\mathcal F,\mathbb P)$”, Lecture Notes in Math., 1709, 1999, 349–354 | MR | Zbl

[4] Cassese G., Yan theorem in $L^\infty$ with applications to asset pricing, Preprint, 2005 ; Acta Math. Appl. Sin. Engl. Ser., 23:4 (2007), 551–562 | MR | Zbl | DOI | Zbl

[5] Christensen M. M., Larsen K., “No arbitrage and the growth optimal portfolio”, Stoch. Anal. Appl., 25:1 (2007), 255–280 | DOI | MR | Zbl

[6] Cvitanić J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl

[7] Danford N., Shvarts Dzh. T., Lineinye operatory, v. I, Obschaya teoriya, IL, M., 1962

[8] Delbaen F., “Representing martingale measures when asset prices are continuous and bounded”, Math. Finance, 2:2 (1992), 107–130 | DOI | Zbl

[9] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[10] Delbaen F., Schachermayer W., “The no-arbitrage property under a change of numéraire”, Stoch. Stoch. Rep., 53:3–4 (1995), 213–226 | MR | Zbl

[11] Delbaen F., Schachermayer W., The Mathematics of Arbitrage, Springer, Berlin, 2006 | MR

[12] Evstigneev I. V., Schürger K., Taksar M. I., “On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria”, Math. Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl

[13] Föllmer H., Kramkov D., “Optional decompositions under constraints”, Probab. Theory Related Fields, 109:1 (1997), 1–25 | DOI | MR | Zbl

[14] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[15] Kabanov Yu. M., “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and Control of Stochastic Processes. The Liptser Festschrift, eds. Yu. M. Kabanov et al., World Scientific, River Edge, 1997, 191–203 | MR | Zbl

[16] Kabanov Yu. M., “Arbitrage theory”, Handbook of Mathematical Finance. Option Pricing, Interest Rates and Risk Management, Cambridge Univ. Press, Cambridge, 2001, 3–42 | MR | Zbl

[17] Kabanov Y., Stricker C., “Remarks on the true no-arbitrage property”, Lecture Notes in Math., 1857, 2005, 186–194 | MR | Zbl

[18] Karatzas I., Kardaras C., “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl

[19] Karatzas I., Shreve S. E., Methods of Mathematical Finance, Springer, New York, 1998, 407 pp. | MR

[20] Karatzas I., Žitković G., “Optimal consumption from investment and random endowment in incomplete semimartingale markets”, Ann. Probab., 31:4 (2003), 1821–1858 | DOI | MR | Zbl

[21] Korn R., “Value preserving strategies and a general framework for local approaches to optimal portfolios”, Math. Finance, 10:2 (2000), 227–241 | DOI | MR | Zbl

[22] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl

[23] Kreps D. M., “Arbitrage and equilibrium in economies with infinitely many commodities”, J. Math. Econom., 8:1 (1981), 15–35 | DOI | MR | Zbl

[24] Pham H., Touzi N., “The fundamental theorem of asset pricing with cone constraints”, J. Math. Econom., 31:2 (1999), 265–279 | DOI | MR | Zbl

[25] Platen E., “A benchmark approach to finance”, Math. Finance, 16:1 (2006), 131–151 | DOI | MR | Zbl

[26] Rokhlin D. B., “Rasshirennaya versiya teoremy Dalanga–Mortona–Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | MR | Zbl

[27] Rokhlin D. B., “The Kreps–Yan theorem for $L^\infty$”, Int. J. Math. Math. Sci., 2005:17 (2005), 2749–2756 | DOI | MR | Zbl

[28] Rokhlin D., Schachermayer W., “A note on lower bounds of martingale measure densities”, Illinois J. Math., 50:4 (2006), 815–824 | MR | Zbl

[29] Schachermayer W., “Martingale measures for discrete-time processes with infinite horizon”, Math. Finance, 4:1 (1994), 25–55 | DOI | MR | Zbl

[30] Schachermayer W., “No arbitrage: on the work of David Kreps: “Arbitrage and equilibrium in economies with infinitely many commodities””, Positivity, 6:3 (2002), 359–368 | DOI | MR | Zbl

[31] Schweizer M., “Martingale densities for general asset prices”, J. Math. Econom., 21:4 (1992), 363–378 | DOI | MR | Zbl

[32] Stricker C., “Arbitrage et lois de martingale”, Ann. Inst. H. Poincaré, 26:3 (1990), 451–460 | MR | Zbl

[33] Žitković G., “A filtered version of the bipolar theorem of Brannath and Schachermayer”, J. Theoret. Probab., 15:1 (2002), 41–61 | DOI | MR