Mots-clés : raire.
@article{TVP_2008_53_4_a3,
author = {D. B. Rokhlin},
title = {Equivalent supermartingale densities and measures in discrete time infinite horizon market models},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {704--731},
year = {2008},
volume = {53},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/}
}
TY - JOUR AU - D. B. Rokhlin TI - Equivalent supermartingale densities and measures in discrete time infinite horizon market models JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 704 EP - 731 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/ LA - ru ID - TVP_2008_53_4_a3 ER -
D. B. Rokhlin. Equivalent supermartingale densities and measures in discrete time infinite horizon market models. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 704-731. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a3/
[1] Becherer D., “The numéraire portfolio for unbounded semimartingales”, Finance Stoch., 5:3 (2001), 327–341 | DOI | MR | Zbl
[2] Bogachev V. I., Osnovy teorii mery, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2003, 544 pp.
[3] Brannath W., Schachermayer W., “A bipolar theorem for $L^0_+(\Omega,\mathcal F,\mathbb P)$”, Lecture Notes in Math., 1709, 1999, 349–354 | MR | Zbl
[4] Cassese G., Yan theorem in $L^\infty$ with applications to asset pricing, Preprint, 2005 ; Acta Math. Appl. Sin. Engl. Ser., 23:4 (2007), 551–562 | MR | Zbl | DOI | Zbl
[5] Christensen M. M., Larsen K., “No arbitrage and the growth optimal portfolio”, Stoch. Anal. Appl., 25:1 (2007), 255–280 | DOI | MR | Zbl
[6] Cvitanić J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl
[7] Danford N., Shvarts Dzh. T., Lineinye operatory, v. I, Obschaya teoriya, IL, M., 1962
[8] Delbaen F., “Representing martingale measures when asset prices are continuous and bounded”, Math. Finance, 2:2 (1992), 107–130 | DOI | Zbl
[9] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[10] Delbaen F., Schachermayer W., “The no-arbitrage property under a change of numéraire”, Stoch. Stoch. Rep., 53:3–4 (1995), 213–226 | MR | Zbl
[11] Delbaen F., Schachermayer W., The Mathematics of Arbitrage, Springer, Berlin, 2006 | MR
[12] Evstigneev I. V., Schürger K., Taksar M. I., “On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria”, Math. Finance, 14:2 (2004), 201–221 | DOI | MR | Zbl
[13] Föllmer H., Kramkov D., “Optional decompositions under constraints”, Probab. Theory Related Fields, 109:1 (1997), 1–25 | DOI | MR | Zbl
[14] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl
[15] Kabanov Yu. M., “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and Control of Stochastic Processes. The Liptser Festschrift, eds. Yu. M. Kabanov et al., World Scientific, River Edge, 1997, 191–203 | MR | Zbl
[16] Kabanov Yu. M., “Arbitrage theory”, Handbook of Mathematical Finance. Option Pricing, Interest Rates and Risk Management, Cambridge Univ. Press, Cambridge, 2001, 3–42 | MR | Zbl
[17] Kabanov Y., Stricker C., “Remarks on the true no-arbitrage property”, Lecture Notes in Math., 1857, 2005, 186–194 | MR | Zbl
[18] Karatzas I., Kardaras C., “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl
[19] Karatzas I., Shreve S. E., Methods of Mathematical Finance, Springer, New York, 1998, 407 pp. | MR
[20] Karatzas I., Žitković G., “Optimal consumption from investment and random endowment in incomplete semimartingale markets”, Ann. Probab., 31:4 (2003), 1821–1858 | DOI | MR | Zbl
[21] Korn R., “Value preserving strategies and a general framework for local approaches to optimal portfolios”, Math. Finance, 10:2 (2000), 227–241 | DOI | MR | Zbl
[22] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl
[23] Kreps D. M., “Arbitrage and equilibrium in economies with infinitely many commodities”, J. Math. Econom., 8:1 (1981), 15–35 | DOI | MR | Zbl
[24] Pham H., Touzi N., “The fundamental theorem of asset pricing with cone constraints”, J. Math. Econom., 31:2 (1999), 265–279 | DOI | MR | Zbl
[25] Platen E., “A benchmark approach to finance”, Math. Finance, 16:1 (2006), 131–151 | DOI | MR | Zbl
[26] Rokhlin D. B., “Rasshirennaya versiya teoremy Dalanga–Mortona–Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | MR | Zbl
[27] Rokhlin D. B., “The Kreps–Yan theorem for $L^\infty$”, Int. J. Math. Math. Sci., 2005:17 (2005), 2749–2756 | DOI | MR | Zbl
[28] Rokhlin D., Schachermayer W., “A note on lower bounds of martingale measure densities”, Illinois J. Math., 50:4 (2006), 815–824 | MR | Zbl
[29] Schachermayer W., “Martingale measures for discrete-time processes with infinite horizon”, Math. Finance, 4:1 (1994), 25–55 | DOI | MR | Zbl
[30] Schachermayer W., “No arbitrage: on the work of David Kreps: “Arbitrage and equilibrium in economies with infinitely many commodities””, Positivity, 6:3 (2002), 359–368 | DOI | MR | Zbl
[31] Schweizer M., “Martingale densities for general asset prices”, J. Math. Econom., 21:4 (1992), 363–378 | DOI | MR | Zbl
[32] Stricker C., “Arbitrage et lois de martingale”, Ann. Inst. H. Poincaré, 26:3 (1990), 451–460 | MR | Zbl
[33] Žitković G., “A filtered version of the bipolar theorem of Brannath and Schachermayer”, J. Theoret. Probab., 15:1 (2002), 41–61 | DOI | MR