Keywords: fractional derivatives, limit theorems, continuous-time random walks, time change, Lйvy subordinators, hitting time processes.
@article{TVP_2008_53_4_a2,
author = {V. N. Kolokoltsov},
title = {Generalized {Continuous-Time} {Random} {Walks,} {Subordination} by {Hitting} {Times,} and {Fractional} {Dynamics}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {684--703},
year = {2008},
volume = {53},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/}
}
TY - JOUR AU - V. N. Kolokoltsov TI - Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 684 EP - 703 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/ LA - ru ID - TVP_2008_53_4_a2 ER -
V. N. Kolokoltsov. Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 684-703. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/
[1] Bass R. F., “Uniqueness in law for pure jump Markov processes Probab”, Theory Related Fields, 79:2 (1988), 271–287 | DOI | MR | Zbl
[2] Becker-Kern P., Meerschaert M. M., Scheffler H.-P., “Limit theorems for coupled continuous time random walks”, Ann. Probab., 32:1B (2004), 730–756 | DOI | MR | Zbl
[3] Bening V. E., Korolev V. Yu., Sukhorukova T. A., Gusarov G. G., Saenko V. V., Uchaikin V. V., “Drobno ustoichivye raspredeleniya”, Stokhasticheskie modeli strukturnoi plazmennoi turbulentnosti, MGU, M., 2003, 291–360
[4] Bening V. E., Korolev V. Yu., Kolokoltsov V. N., Saenko V. V., Uchaikin V. V., Zolotarev V. M., “Estimation of parameters of fractional stable distributions”, J. Math. Sci. (N.Y.), 123:1 (2004), 3722–3732 | DOI | MR | Zbl
[5] Bening V. E., Korolev V. Yu., Kolokoltsov V. N., “Limit theorems for continuous-time random walks in the double array limit scheme”, J. Math. Sci. (N.Y.), 138:1 (2006), 5348–5365 | DOI | MR | Zbl
[6] Kallenberg O., Foundations of Modern Probability, Springer-Verlag, New York, 2002 | MR
[7] Kotulski M., “Asymptotic distribution of continuous-time random walks: a probabilistic approach”, J. Statist. Phys., 81:3–4 (1995), 777–792 | DOI | Zbl
[8] Kolokoltsov V. N., “Symmetric stable laws and stable-like jump-diffusions”, Proc. London Math. Soc., 80:3 (2000), 725–768 | DOI | MR | Zbl
[9] Kolokoltsov V. N., Semiclassical analysis for diffusions and stochastic processes, Lecture Notes in Math., 1724, 2000, 347 pp. | MR | Zbl
[10] Kolokoltsov V. N., “Nonlinear Markov semigroups and interacting Lévy type processes”, J. Statist. Phys., 126:3 (2007), 585–642 | DOI | MR | Zbl
[11] Kolokoltsov V. N., Korolev V. Yu., Uchaikin V. V., “Fractional stable distributions”, J. Math. Sci. (N.Y.), 105:6 (2001), 2569–2576 | DOI | MR | Zbl
[12] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007, 542 pp.
[13] Korolev V. Yu. et al., “Some methods of the analysis of time characteristics of catastrophes in non-homogeneous flows of extremal events”, Sistemy i sredstva informatiki. Matematicheskie modeli v informatsionnykh tekhnologiyakh, RAN, M., 2006, 5–23
[14] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965
[15] Meerschaert M. M., Scheffler H.-P., “Limit theorems for continuous-time random walks with infinite mean waiting times”, J. Appl. Probab., 41:3 (2004), 623–638 | DOI | MR | Zbl
[16] Meerschaert M. M., Scheffler H.-P., Limit Distributions for Sums of Independent Random Vectors, Wiley, New York, 2001, 484 pp. | MR
[17] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamic approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl
[18] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993, 366 pp. | MR
[19] Montroll E. W., Weiss G. H., “Random walks on lattices, II”, J. Math. Phys., 6 (1965), 167–181 | DOI | MR
[20] Saichev A. I., Woyczyński W. A., Distributions in the Physical and Engineering Sciences, v. 1, Birkhäuser, Boston, 1997, 336 pp. | MR | Zbl
[21] Saichev A. I., Zaslavsky G. M., “Fractional kinetic equations: solutions and applications”, Chaos, 7:4 (1977), 753–764 | DOI | MR
[22] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 432 pp. | MR
[23] Uchaikin V. V., “Montroll–Weiss problem, fractional equations, and stable distributions”, Internat. J. Theoret. Phys., 39:8 (2000), 2087–2105 | DOI | MR | Zbl
[24] Whitt W., Stochastic-Process Limits, Springer, New York, 2002, 602 pp. | MR
[25] Zaslavsky G. M., “Fractional kinetic equation for Hamiltonian chaos”, Phys. D, 76:1–3 (1994), 110–122 | DOI | MR