Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 684-703 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional limit theorems for continuous-time random walks (CTRW) are found in the general case of dependent waiting times and jump sizes that are also position dependent. The limiting anomalous diffusion is described in terms of fractional dynamics. Probabilistic interpretation of generalized fractional evolution is given in terms of the random time change (subordination) by means of hitting times processes.
Mots-clés : fractional stable distributions, anomalous diffusion
Keywords: fractional derivatives, limit theorems, continuous-time random walks, time change, Lйvy subordinators, hitting time processes.
@article{TVP_2008_53_4_a2,
     author = {V. N. Kolokoltsov},
     title = {Generalized {Continuous-Time} {Random} {Walks,} {Subordination} by {Hitting} {Times,} and {Fractional} {Dynamics}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {684--703},
     year = {2008},
     volume = {53},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
TI  - Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 684
EP  - 703
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/
LA  - ru
ID  - TVP_2008_53_4_a2
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%T Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 684-703
%V 53
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/
%G ru
%F TVP_2008_53_4_a2
V. N. Kolokoltsov. Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 684-703. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a2/

[1] Bass R. F., “Uniqueness in law for pure jump Markov processes Probab”, Theory Related Fields, 79:2 (1988), 271–287 | DOI | MR | Zbl

[2] Becker-Kern P., Meerschaert M. M., Scheffler H.-P., “Limit theorems for coupled continuous time random walks”, Ann. Probab., 32:1B (2004), 730–756 | DOI | MR | Zbl

[3] Bening V. E., Korolev V. Yu., Sukhorukova T. A., Gusarov G. G., Saenko V. V., Uchaikin V. V., “Drobno ustoichivye raspredeleniya”, Stokhasticheskie modeli strukturnoi plazmennoi turbulentnosti, MGU, M., 2003, 291–360

[4] Bening V. E., Korolev V. Yu., Kolokoltsov V. N., Saenko V. V., Uchaikin V. V., Zolotarev V. M., “Estimation of parameters of fractional stable distributions”, J. Math. Sci. (N.Y.), 123:1 (2004), 3722–3732 | DOI | MR | Zbl

[5] Bening V. E., Korolev V. Yu., Kolokoltsov V. N., “Limit theorems for continuous-time random walks in the double array limit scheme”, J. Math. Sci. (N.Y.), 138:1 (2006), 5348–5365 | DOI | MR | Zbl

[6] Kallenberg O., Foundations of Modern Probability, Springer-Verlag, New York, 2002 | MR

[7] Kotulski M., “Asymptotic distribution of continuous-time random walks: a probabilistic approach”, J. Statist. Phys., 81:3–4 (1995), 777–792 | DOI | Zbl

[8] Kolokoltsov V. N., “Symmetric stable laws and stable-like jump-diffusions”, Proc. London Math. Soc., 80:3 (2000), 725–768 | DOI | MR | Zbl

[9] Kolokoltsov V. N., Semiclassical analysis for diffusions and stochastic processes, Lecture Notes in Math., 1724, 2000, 347 pp. | MR | Zbl

[10] Kolokoltsov V. N., “Nonlinear Markov semigroups and interacting Lévy type processes”, J. Statist. Phys., 126:3 (2007), 585–642 | DOI | MR | Zbl

[11] Kolokoltsov V. N., Korolev V. Yu., Uchaikin V. V., “Fractional stable distributions”, J. Math. Sci. (N.Y.), 105:6 (2001), 2569–2576 | DOI | MR | Zbl

[12] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2007, 542 pp.

[13] Korolev V. Yu. et al., “Some methods of the analysis of time characteristics of catastrophes in non-homogeneous flows of extremal events”, Sistemy i sredstva informatiki. Matematicheskie modeli v informatsionnykh tekhnologiyakh, RAN, M., 2006, 5–23

[14] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[15] Meerschaert M. M., Scheffler H.-P., “Limit theorems for continuous-time random walks with infinite mean waiting times”, J. Appl. Probab., 41:3 (2004), 623–638 | DOI | MR | Zbl

[16] Meerschaert M. M., Scheffler H.-P., Limit Distributions for Sums of Independent Random Vectors, Wiley, New York, 2001, 484 pp. | MR

[17] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamic approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[18] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993, 366 pp. | MR

[19] Montroll E. W., Weiss G. H., “Random walks on lattices, II”, J. Math. Phys., 6 (1965), 167–181 | DOI | MR

[20] Saichev A. I., Woyczyński W. A., Distributions in the Physical and Engineering Sciences, v. 1, Birkhäuser, Boston, 1997, 336 pp. | MR | Zbl

[21] Saichev A. I., Zaslavsky G. M., “Fractional kinetic equations: solutions and applications”, Chaos, 7:4 (1977), 753–764 | DOI | MR

[22] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 432 pp. | MR

[23] Uchaikin V. V., “Montroll–Weiss problem, fractional equations, and stable distributions”, Internat. J. Theoret. Phys., 39:8 (2000), 2087–2105 | DOI | MR | Zbl

[24] Whitt W., Stochastic-Process Limits, Springer, New York, 2002, 602 pp. | MR

[25] Zaslavsky G. M., “Fractional kinetic equation for Hamiltonian chaos”, Phys. D, 76:1–3 (1994), 110–122 | DOI | MR