Asymptotics in the Law of the Iterated Logarithm
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 823-826

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the precise asymptotic in the law of the iterated logarithm is considered. The result of A. Gut and A. Spataru [Ann. Probab., 28 (2000), pp. 1870–1883] is generalized for the case of the variables not of the same distribution.
Keywords: law of iterated logarithm, Fuk–Nagaev type inequality.
@article{TVP_2008_53_4_a12,
     author = {M. B. Cwikl{\'\i}nska},
     title = {Asymptotics in the {Law} of the {Iterated} {Logarithm}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {823--826},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a12/}
}
TY  - JOUR
AU  - M. B. Cwiklínska
TI  - Asymptotics in the Law of the Iterated Logarithm
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 823
EP  - 826
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a12/
LA  - en
ID  - TVP_2008_53_4_a12
ER  - 
%0 Journal Article
%A M. B. Cwiklínska
%T Asymptotics in the Law of the Iterated Logarithm
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 823-826
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a12/
%G en
%F TVP_2008_53_4_a12
M. B. Cwiklínska. Asymptotics in the Law of the Iterated Logarithm. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 823-826. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a12/