Waves in Reduced Branching Processes in a Random Environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 665-683
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Z(n)$, $n=0,1\dots,$ be a branching process evolving in the random environment generated by a sequence of independent identically distributed generating functions $f_{0}(s),f_{1}(s),\dots,$ and let $S_{0}=0$, $S_{k}=X_{1}+\dots+X_{k}$, $k\ge1,$ be the associated random walk with $X_{i}=\log f_{i-1}'(1),$ and $\tau (n)$ be the leftmost point of the minimum of $\{ S_{k}$,$k\ge0\} $ on the interval $[0,n]$. Denoting by $Z(k,m)$ the number of particles existing in the branching process at the time moment $k\le m$ which have nonempty offspring at the time moment $m$, and assuming that the associated random walk satisfies the Doney condition $P(S_{n}>0)\to \rho \in (0,1)$, $n\to\infty$, we prove (under the quenched approach) conditional limit theorems, as $n\to\infty$, for the distribution of $Z(nt_{1},nt_{2})$, $0$ given $Z(n)>0$. It is shown that the form of the limit distributions essentially depends on the position of $\tau (n)$ with respect to the interval $[nt_{1},nt_{2}].$
Keywords:
branching processes in a random environment, Doney condition, conditional limit theorems.
@article{TVP_2008_53_4_a1,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Waves in {Reduced} {Branching} {Processes} in a {Random} {Environment}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {665--683},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Waves in Reduced Branching Processes in a Random Environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 665 EP - 683 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a1/ LA - ru ID - TVP_2008_53_4_a1 ER -
V. A. Vatutin; E. E. D'yakonova. Waves in Reduced Branching Processes in a Random Environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 4, pp. 665-683. http://geodesic.mathdoc.fr/item/TVP_2008_53_4_a1/