Asymptotic Exponentiality of the Distribution of First Exit Times for a Class of Markov Processes with Applications to Quickest Change Detection
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 3, pp. 500-515

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first exit time of a nonnegative Harris-recurrent Markov process from the interval $[0,A]$ as $A\to\infty$. We provide an alternative method of proof of asymptotic exponentiality of the first exit time (suitably standardized) that does not rely on embedding in a regeneration process. We show that under certain conditions the moment generating function of a suitably standardized version of the first exit time converges to that of Exponential (1), and we connect between the standardizing constant and the quasi-stationary distribution (assuming it exists). The results are applied to the evaluation of a distribution of run length to false alarm in change-point detection problems.
Keywords: Markov process, stationary distribution, quasi-stationary distribution, first exit time, asymptotic exponentiality, change-point problems, CUSUM procedures, Shiryaev-Roberts procedures.
@article{TVP_2008_53_3_a4,
     author = {M. Pollak and A. G. Tartakovskii},
     title = {Asymptotic {Exponentiality} of the {Distribution} of {First} {Exit} {Times} for a {Class} of {Markov} {Processes} with {Applications} to {Quickest} {Change} {Detection}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {500--515},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a4/}
}
TY  - JOUR
AU  - M. Pollak
AU  - A. G. Tartakovskii
TI  - Asymptotic Exponentiality of the Distribution of First Exit Times for a Class of Markov Processes with Applications to Quickest Change Detection
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 500
EP  - 515
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a4/
LA  - en
ID  - TVP_2008_53_3_a4
ER  - 
%0 Journal Article
%A M. Pollak
%A A. G. Tartakovskii
%T Asymptotic Exponentiality of the Distribution of First Exit Times for a Class of Markov Processes with Applications to Quickest Change Detection
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 500-515
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a4/
%G en
%F TVP_2008_53_3_a4
M. Pollak; A. G. Tartakovskii. Asymptotic Exponentiality of the Distribution of First Exit Times for a Class of Markov Processes with Applications to Quickest Change Detection. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 3, pp. 500-515. http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a4/