Filtered Arithmetic Mean Measure and Its Applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 354-364

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider fixed probability measures on a filtered space. We construct a new measure having the following property: the predictable characteristics of any semimartingale with respect to this measure are computed as the arithmetic mean of predictable characteristics with respect to initial probability measures. We present as an application of the measure a computable minimax risk estimation in Fano's lemma.
Keywords: triplet of predictable characteristics, Hellinger process, Kullback-Leibler process, Kullback–Leibler information, Fano's lemma.
@article{TVP_2008_53_2_a9,
     author = {D. A. Zhdanov},
     title = {Filtered {Arithmetic} {Mean} {Measure} and {Its} {Applications}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {354--364},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/}
}
TY  - JOUR
AU  - D. A. Zhdanov
TI  - Filtered Arithmetic Mean Measure and Its Applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 354
EP  - 364
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/
LA  - ru
ID  - TVP_2008_53_2_a9
ER  - 
%0 Journal Article
%A D. A. Zhdanov
%T Filtered Arithmetic Mean Measure and Its Applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 354-364
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/
%G ru
%F TVP_2008_53_2_a9
D. A. Zhdanov. Filtered Arithmetic Mean Measure and Its Applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 354-364. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/