Filtered Arithmetic Mean Measure and Its Applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 354-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider fixed probability measures on a filtered space. We construct a new measure having the following property: the predictable characteristics of any semimartingale with respect to this measure are computed as the arithmetic mean of predictable characteristics with respect to initial probability measures. We present as an application of the measure a computable minimax risk estimation in Fano's lemma.
Keywords: triplet of predictable characteristics, Hellinger process, Kullback-Leibler process, Kullback–Leibler information, Fano's lemma.
@article{TVP_2008_53_2_a9,
     author = {D. A. Zhdanov},
     title = {Filtered {Arithmetic} {Mean} {Measure} and {Its} {Applications}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {354--364},
     year = {2008},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/}
}
TY  - JOUR
AU  - D. A. Zhdanov
TI  - Filtered Arithmetic Mean Measure and Its Applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 354
EP  - 364
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/
LA  - ru
ID  - TVP_2008_53_2_a9
ER  - 
%0 Journal Article
%A D. A. Zhdanov
%T Filtered Arithmetic Mean Measure and Its Applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 354-364
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/
%G ru
%F TVP_2008_53_2_a9
D. A. Zhdanov. Filtered Arithmetic Mean Measure and Its Applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 354-364. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a9/

[1] Birgé L., “A new lower bound for multiple hypothesis testing”, IEEE Trans. Inform. Theory, 51:4 (2005), 1611–1615 | DOI | MR

[2] Guschin A. A., “O lemme Fano i analogichnykh neravenstvakh dlya minimaksnogo riska”, Teoriya veroyatn. i matem. statist., 67 (2002), 26–37

[3] Gushchin A. A., “On an information-type inequality for the Hellinger process”, Proceedings of the Seventh Japan–Russia Symposium on Probability Theory and Mathematical Statistics, eds. S. Watanabe et al., World Scientific, Singapore, 1996, 83–109 | MR | Zbl

[4] Jacod J., Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, 539 pp. | MR | Zbl

[5] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Fizmatlit, M., 1994, 542 pp.; 366 с.

[6] Zhdanov D. A., “O lemme Fano dlya sluchaya filtrovannogo prostranstva”, Obozrenie prikl. i promyshl. matem., 13:6 (2006), 1024–1026

[7] Haussler D., Opper M., “Mutual information, metric entropy and cumulative relative entropy risk”, Ann. Statist., 25:6 (1997), 2451–2492 | DOI | MR | Zbl

[8] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 527 pp. | MR

[9] Kolomiets E. I., Martingalnye metody v asimptoticheskoi teorii proverki statisticheskikh gipotez, Diss. kand. fiz.-matem. nauk, MGU, M., 1986

[10] Kolomiets E. I., “Ob asimptoticheskom povedenii veroyatnostei oshibok vtorogo roda v kriterii Neimana–Pirsona (sluchai vpolne asimptoticheski razlichimykh gipotez)”, Teoriya veroyatn. i ee primen., 32:3 (1987), 503–522 | MR | Zbl

[11] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[12] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986, 512 pp. | MR | Zbl