An Extension of the Ocone--Haussmann--Clark Formula for the Compensated Poisson Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 349-353

Voir la notice de l'article provenant de la source Math-Net.Ru

The Sobolev-type spaces $D_{p,1,\alpha }^{CP}$ ($1\le p\le2$) are defined for the compensated Poisson process, and the stochastic integral representation (analogous to the Ocone–Haussmann–Clark formula) is derived for the functionals from these spaces. The formula is given for the computation of the predictable projections of the stochastic derivatives of the above-mentioned functionals.
Keywords: Ocone–Haussmann–Clark formula, compensated Poisson process, stochastic derivative, predictable projection.
@article{TVP_2008_53_2_a8,
     author = {V. Jaoshvili and O. G. Purtukhiya},
     title = {An {Extension} of the {Ocone--Haussmann--Clark} {Formula} for the {Compensated} {Poisson} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {349--353},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a8/}
}
TY  - JOUR
AU  - V. Jaoshvili
AU  - O. G. Purtukhiya
TI  - An Extension of the Ocone--Haussmann--Clark Formula for the Compensated Poisson Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 349
EP  - 353
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a8/
LA  - ru
ID  - TVP_2008_53_2_a8
ER  - 
%0 Journal Article
%A V. Jaoshvili
%A O. G. Purtukhiya
%T An Extension of the Ocone--Haussmann--Clark Formula for the Compensated Poisson Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 349-353
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a8/
%G ru
%F TVP_2008_53_2_a8
V. Jaoshvili; O. G. Purtukhiya. An Extension of the Ocone--Haussmann--Clark Formula for the Compensated Poisson Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 349-353. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a8/