On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 336-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper, consisting of two parts, is sequential to [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594], [A. A. Borovkov and K. A. Borovkov, Theory Probab. Appl., 46 (2002), pp. 193–213 and 49 (2005), pp. 189–206], and [A. A. Borovkov and K. A. Borovkov, Asymptotic Analysis of Random Walks. I. Slowly Decreasing Distributions of Jumps, Nauka, Moscow (in Russian), to be published] and is devoted to studying the asymptotics of the probability that the sum of the independent random vectors is in a small cube with the vertex at point $x$ in the large deviations zone. The papers [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594] are mostly devoted to the “regular deviations” problem (the problem [A] using the terminology of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594]), when the relative (“normalized”) deviations $x/n$ ($n$ is the number of terms in the sum) are in the analyticity domain of the large deviations rate function for the summands (the so-called Cramér deviations zone) and at the same time $|x|/n\to\infty$ (superlarge deviations). In the present paper we study the “alternative” problem of “irregular deviations” when $x/n$ either approaches the boundary of the Cramér deviations zone or moves away from this zone (the problem [B] using the terminology of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594]). In this case the large deviations problems in many aspects remained unknown. The desired asymptotics for deviations close to the boundary of the Cramér zone is obtained in section I of this paper under quite weak conditions in the general multivariate case. Furthermore, in the univariate case we also study the deviations which are bounded away from the Cramér zone. In this case we require some additional regularity properties for the distributions of the summands.
Keywords: rate function, large deviations, irregular large deviations, integrolocal theorem.
Mots-clés : Cramér deviation zone, superlarge deviations
@article{TVP_2008_53_2_a6,
     author = {A. A. Borovkov and A. A. Mogul'skii},
     title = {On {Large} {Deviations} of {Sums} of {Independent} {Random} {Vectors} on the {Boundary} and {Outside} of the {Cram\'er} {Zone.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {336--344},
     year = {2008},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a6/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skii
TI  - On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 336
EP  - 344
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a6/
LA  - ru
ID  - TVP_2008_53_2_a6
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skii
%T On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 336-344
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a6/
%G ru
%F TVP_2008_53_2_a6
A. A. Borovkov; A. A. Mogul'skii. On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 336-344. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a6/

[1] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera. I”, Teoriya veroyatn. i ee primen., 51:2 (2006), 260–294 | MR

[2] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera. II”, Teoriya veroyatn. i ee primen., 51:4 (2006), 641–673 | MR

[3] Borovkov A. A., Borovkov K. A., “O veroyatnostyakh bolshikh uklonenii dlya sluchainykh bluzhdanii. I. Raspredeleniya s pravilno menyayuschimisya khvostami”, Teoriya veroyatn. i ee primen., 46:2 (2001), 209–232 | MR | Zbl

[4] Borovkov A. A., Borovkov K. A., “O veroyatnostyakh bolshikh uklonenii dlya sluchainykh bluzhdanii. II. Regulyarnye eksponentsialno ubyvayuschie raspredeleniya”, Teoriya veroyatn. i ee primen., 49:2 (2004), 209–230 | MR | Zbl

[5] Borovkov A. A., Borovkov K. A., Asimptoticheskii analiz sluchainykh bluzhdanii, v. I, Medlenno ubyvayuschie raspredeleniya skachkov, Nauka, M. (to appear)

[6] Stone C., “On local and ratio limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, 1965/66), Part 2, v. II, Univ. of California Press, Berkeley, 1966, 217–224 | MR

[7] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye teoremy dlya summ nezavisimykh sluchainykh vektorov v skheme serii”, Matem. zametki, 79:4 (2006), 505–521 | MR | Zbl

[8] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye i integralnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Cib. matem. zhurn., 47:6 (2006), 1218–1257 | MR | Zbl

[9] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Nauka, Novosibirsk, 1992, 223 pp.

[10] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I”, Teoriya veroyatn. i ee primen., 43:1 (1998), 3–17 | MR | Zbl

[11] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. II”, Teoriya veroyatn. i ee primen., 45:1 (2000), 5–29 | MR | Zbl

[12] Mogulskii A. A., “Integro-lokalnaya teorema, deistvuyuschaya na vsei poluosi, dlya summ sluchainykh velichin s pravilno menyayuschimisya raspredeleniyami”, Sib. matem. zhurn., 49:4 (2008), 837–854 | MR | Zbl

[13] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967, 752 pp. | MR

[14] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gokhtekhizdat, M., L., 1949, 264 pp. | MR

[15] Rvacheva E. L., “Ob oblastyakh prityazheniya mnogomernykh raspredelenii”, Uchenye Zapiski Lvovskogo Gos. un-ta, 6 (1958), 5–44

[16] Shepp L. A., “A local limit theorem”, Ann. Math. Statist., 35 (1964), 419–423 | DOI | MR | Zbl

[17] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[18] Bingham N. H., Goldie C. H., Teugels J. L., Regular Variations, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[19] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.