Quantization for Probability Measures in the Prokhorov Metric
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 307-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a probability distribution $P$ on $R^d$ and $n\inN$ consider $e_n=\inf\pi(P,Q)$, where $\pi$ denotes the Prokhorov metric and the infimum is taken over all discrete probabilities $Q$ with $|\mathrm{supp}(Q)|\le n$. We study solutions $Q$ of this minimization problem, stability properties, and consistency of empirical estimators. For some classes of distributions we determine the exact rate of convergence to zero of the $n$th quantization error $e_n$ as $n\to\infty$.
Keywords: Ky Fan metric, Prokhorov metric, empirical measures, asymptotic quantization error, entropy
Mots-clés : multidimensional quantization, optimal quantizers, quantization dimension.
@article{TVP_2008_53_2_a5,
     author = {S. Graf and H. Luschgy},
     title = {Quantization for {Probability} {Measures} in the {Prokhorov} {Metric}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {307--335},
     year = {2008},
     volume = {53},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a5/}
}
TY  - JOUR
AU  - S. Graf
AU  - H. Luschgy
TI  - Quantization for Probability Measures in the Prokhorov Metric
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 307
EP  - 335
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a5/
LA  - en
ID  - TVP_2008_53_2_a5
ER  - 
%0 Journal Article
%A S. Graf
%A H. Luschgy
%T Quantization for Probability Measures in the Prokhorov Metric
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 307-335
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a5/
%G en
%F TVP_2008_53_2_a5
S. Graf; H. Luschgy. Quantization for Probability Measures in the Prokhorov Metric. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 307-335. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a5/

[1] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[2] Bollobás B., “The optimal arrangement of producers”, J. London Math. Soc., 6 (1973), 605–613 | DOI | MR | Zbl

[3] Bucklew J. A., Wise G. L., “Multidimensional asymptotic quantization theory with $r$th power distortion measures”, IEEE Trans. Inform. Theory, 28:2 (1982), 239–247 | DOI | MR | Zbl

[4] Cuesta-Albertos J. A., Gordaliza A., Matrán C., “Trimmed $k$-means: an attempt to robustify quantizers”, Ann. Statist., 25 (1997), 553–576 | DOI | MR | Zbl

[5] Cuesta-Albertos J. A., García-Escudero L. A., Gordaliza A., “On the asymptotics of trimmed $k$-nets”, J. Multivariate Anal., 82 (2002), 486–516 | DOI | MR | Zbl

[6] David G., Semmes S., Fractured Fractals and Broken Dreams, Oxford Univ. Press, New York, 1997, 212 pp. | MR

[7] Dudley R. M., “Distances of probability measures and random variables”, Ann. Math. Statist., 39 (1968), 1563–1572 | MR | Zbl

[8] Dudley R. M., “The speed of mean Glivenko-Cantelli convergence”, Ann. Math. Statist., 40 (1969), 40–50 | DOI | MR | Zbl

[9] Dudley R. M., Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, 1989, 436 pp. | MR | Zbl

[10] Gersho A., Gray R. M., Vector Quantization and Signal Compression, Kluwer, Boston, 1992, 761 pp. | Zbl

[11] Graf S., Luschgy H., The quantization dimension of self-similar sets, Research Report no 9, Passau: Dept. of Mathematics and Computer Science, Univ. of Passau, 1996

[12] Graf S., Luschgy H., Foundations of Quantization for Probability Distributions, Lecture Notes in Math., 1730, Springer-Verlag, Berlin, 2000, 230 pp. | MR | Zbl

[13] Gruber P. M., Lekkerkerker C. G., Geometry of Numbers, North-Holland, Amsterdam, 1987, 732 pp. | MR | Zbl

[14] Imre M., “Kreislagerungen auf Flächen konstanter Krümmung”, Acta. Math. Acad. Sci. Hungar., 15 (1964), 115–121 | DOI | MR | Zbl

[15] Kersting G. D., “Die Geschwindigkeit der Glivenko–Cantelli-Konvergenz gemessen in der Prohorov-Metrik”, Math. Z, 163 (1978), 65–102 | DOI | MR | Zbl

[16] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR

[17] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995, 343 pp. | MR | Zbl

[18] Pagès G., Pham H., Printemps J., “Optimal quantization methods and applications to numerical problems in finance”, Handbook of Computational and Numerical Methods in Finance, ed. S. Rachev, Birkhäuser, Boston, 2004, 253–298 | MR

[19] Rogers C. A., “A note on coverings”, Mathematika, 4 (1957), 1–16 | DOI | MR

[20] Shor P. W., Yukich J. E., “Minimax grid matching and empirical measures”, Ann. Probab., 19:3 (1991), 1338–1348 | DOI | MR | Zbl

[21] Tarpey T., Li L., Flury B. D., “Principal points and self-consistent points of elliptical distributions”, Ann. Statist., 23:1 (1995), 103–112 | DOI | MR | Zbl

[22] Yukich J. E., “Optimal matching and empirical measures”, Proc. Amer. Math. Soc., 107:4 (1989), 1051–1059 | DOI | MR | Zbl

[23] Zador P. L., Development and evaluation of procedures for quantizing multivariate distributions, Ph. D. Dissertation, Stanford Univ., 1963

[24] Zador P. L., “Asymptotic quantization error of continuous signals and the quantization dimension”, IEEE Trans. Inform. Theory, 28:2 (1982), 139–149 | DOI | MR | Zbl