Mots-clés : multidimensional quantization, optimal quantizers, quantization dimension.
@article{TVP_2008_53_2_a5,
author = {S. Graf and H. Luschgy},
title = {Quantization for {Probability} {Measures} in the {Prokhorov} {Metric}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {307--335},
year = {2008},
volume = {53},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a5/}
}
S. Graf; H. Luschgy. Quantization for Probability Measures in the Prokhorov Metric. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 307-335. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a5/
[1] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[2] Bollobás B., “The optimal arrangement of producers”, J. London Math. Soc., 6 (1973), 605–613 | DOI | MR | Zbl
[3] Bucklew J. A., Wise G. L., “Multidimensional asymptotic quantization theory with $r$th power distortion measures”, IEEE Trans. Inform. Theory, 28:2 (1982), 239–247 | DOI | MR | Zbl
[4] Cuesta-Albertos J. A., Gordaliza A., Matrán C., “Trimmed $k$-means: an attempt to robustify quantizers”, Ann. Statist., 25 (1997), 553–576 | DOI | MR | Zbl
[5] Cuesta-Albertos J. A., García-Escudero L. A., Gordaliza A., “On the asymptotics of trimmed $k$-nets”, J. Multivariate Anal., 82 (2002), 486–516 | DOI | MR | Zbl
[6] David G., Semmes S., Fractured Fractals and Broken Dreams, Oxford Univ. Press, New York, 1997, 212 pp. | MR
[7] Dudley R. M., “Distances of probability measures and random variables”, Ann. Math. Statist., 39 (1968), 1563–1572 | MR | Zbl
[8] Dudley R. M., “The speed of mean Glivenko-Cantelli convergence”, Ann. Math. Statist., 40 (1969), 40–50 | DOI | MR | Zbl
[9] Dudley R. M., Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific Grove, 1989, 436 pp. | MR | Zbl
[10] Gersho A., Gray R. M., Vector Quantization and Signal Compression, Kluwer, Boston, 1992, 761 pp. | Zbl
[11] Graf S., Luschgy H., The quantization dimension of self-similar sets, Research Report no 9, Passau: Dept. of Mathematics and Computer Science, Univ. of Passau, 1996
[12] Graf S., Luschgy H., Foundations of Quantization for Probability Distributions, Lecture Notes in Math., 1730, Springer-Verlag, Berlin, 2000, 230 pp. | MR | Zbl
[13] Gruber P. M., Lekkerkerker C. G., Geometry of Numbers, North-Holland, Amsterdam, 1987, 732 pp. | MR | Zbl
[14] Imre M., “Kreislagerungen auf Flächen konstanter Krümmung”, Acta. Math. Acad. Sci. Hungar., 15 (1964), 115–121 | DOI | MR | Zbl
[15] Kersting G. D., “Die Geschwindigkeit der Glivenko–Cantelli-Konvergenz gemessen in der Prohorov-Metrik”, Math. Z, 163 (1978), 65–102 | DOI | MR | Zbl
[16] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi matem. nauk, 14:2 (1959), 3–86 | MR
[17] Mattila P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995, 343 pp. | MR | Zbl
[18] Pagès G., Pham H., Printemps J., “Optimal quantization methods and applications to numerical problems in finance”, Handbook of Computational and Numerical Methods in Finance, ed. S. Rachev, Birkhäuser, Boston, 2004, 253–298 | MR
[19] Rogers C. A., “A note on coverings”, Mathematika, 4 (1957), 1–16 | DOI | MR
[20] Shor P. W., Yukich J. E., “Minimax grid matching and empirical measures”, Ann. Probab., 19:3 (1991), 1338–1348 | DOI | MR | Zbl
[21] Tarpey T., Li L., Flury B. D., “Principal points and self-consistent points of elliptical distributions”, Ann. Statist., 23:1 (1995), 103–112 | DOI | MR | Zbl
[22] Yukich J. E., “Optimal matching and empirical measures”, Proc. Amer. Math. Soc., 107:4 (1989), 1051–1059 | DOI | MR | Zbl
[23] Zador P. L., Development and evaluation of procedures for quantizing multivariate distributions, Ph. D. Dissertation, Stanford Univ., 1963
[24] Zador P. L., “Asymptotic quantization error of continuous signals and the quantization dimension”, IEEE Trans. Inform. Theory, 28:2 (1982), 139–149 | DOI | MR | Zbl