Some Asymptotic Decompositions in the Central Limit Theorem in the Multidimensional Case
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 293-306

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper obtains asymptotic decompositions in the central limit theorem in the multidimensional case with explicit estimates of approximation, which they guarantee. Normalized sums of independent identically distributed random variables with finite moments of the fourth and fifth orders are considered. In constructing the decompositions, analogues of the Chebyshev–Hermite polynomials are used.
Keywords: central limit theorem, multidimensional distributions, asymptotic distributions, multidimensional analogues of Chebyshev-Hermite polynomials.
@article{TVP_2008_53_2_a4,
     author = {V. V. Senatov},
     title = {Some {Asymptotic} {Decompositions} in the {Central} {Limit} {Theorem} in the {Multidimensional} {Case}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {293--306},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a4/}
}
TY  - JOUR
AU  - V. V. Senatov
TI  - Some Asymptotic Decompositions in the Central Limit Theorem in the Multidimensional Case
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 293
EP  - 306
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a4/
LA  - ru
ID  - TVP_2008_53_2_a4
ER  - 
%0 Journal Article
%A V. V. Senatov
%T Some Asymptotic Decompositions in the Central Limit Theorem in the Multidimensional Case
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 293-306
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a4/
%G ru
%F TVP_2008_53_2_a4
V. V. Senatov. Some Asymptotic Decompositions in the Central Limit Theorem in the Multidimensional Case. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 293-306. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a4/