On Mosco Convergence of Diffusion Dirichlet Forms
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 277-292
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers the Mosco convergence of Dirichlet forms $\mathcal{E}_n(f)=\int|\nabla f|^2\,d\mu_n$, where the measures $\mu_n$ locally converge in variation and it is not necessary to have complete supports.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
diffusion semigroups, measure differentiability, quadratic forms, Sobolev classes.
Mots-clés : Mosco convergence
                    
                  
                
                
                Mots-clés : Mosco convergence
@article{TVP_2008_53_2_a3,
     author = {O. V. Pugachev},
     title = {On {Mosco} {Convergence} of {Diffusion} {Dirichlet} {Forms}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/}
}
                      
                      
                    O. V. Pugachev. On Mosco Convergence of Diffusion Dirichlet Forms. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 277-292. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/
