On Mosco Convergence of Diffusion Dirichlet Forms
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 277-292

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the Mosco convergence of Dirichlet forms $\mathcal{E}_n(f)=\int|\nabla f|^2\,d\mu_n$, where the measures $\mu_n$ locally converge in variation and it is not necessary to have complete supports.
Keywords: diffusion semigroups, measure differentiability, quadratic forms, Sobolev classes.
Mots-clés : Mosco convergence
@article{TVP_2008_53_2_a3,
     author = {O. V. Pugachev},
     title = {On {Mosco} {Convergence} of {Diffusion} {Dirichlet} {Forms}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - On Mosco Convergence of Diffusion Dirichlet Forms
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 277
EP  - 292
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/
LA  - ru
ID  - TVP_2008_53_2_a3
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T On Mosco Convergence of Diffusion Dirichlet Forms
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 277-292
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/
%G ru
%F TVP_2008_53_2_a3
O. V. Pugachev. On Mosco Convergence of Diffusion Dirichlet Forms. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 277-292. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/