On Mosco Convergence of Diffusion Dirichlet Forms
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 277-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the Mosco convergence of Dirichlet forms $\mathcal{E}_n(f)=\int|\nabla f|^2\,d\mu_n$, where the measures $\mu_n$ locally converge in variation and it is not necessary to have complete supports.
Keywords: diffusion semigroups, measure differentiability, quadratic forms, Sobolev classes.
Mots-clés : Mosco convergence
@article{TVP_2008_53_2_a3,
     author = {O. V. Pugachev},
     title = {On {Mosco} {Convergence} of {Diffusion} {Dirichlet} {Forms}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {277--292},
     year = {2008},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - On Mosco Convergence of Diffusion Dirichlet Forms
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 277
EP  - 292
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/
LA  - ru
ID  - TVP_2008_53_2_a3
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T On Mosco Convergence of Diffusion Dirichlet Forms
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 277-292
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/
%G ru
%F TVP_2008_53_2_a3
O. V. Pugachev. On Mosco Convergence of Diffusion Dirichlet Forms. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 277-292. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a3/

[1] Mosco U., “Composite media and asymptotic Dirichlet forms”, J. Funct. Anal., 123:2 (1994), 368–421 | DOI | MR | Zbl

[2] Kolesnikov A. V., “Convergence of Dirichlet forms with changing speed measures on $\mathbb R^d$”, Forum. Math., 17:2 (2005), 225–259 | DOI | MR | Zbl

[3] Kolesnikov A. V., “Mosco convergence of Dirichlet forms in infinite dimensions with changing reference measures”, J. Funct. Anal., 230:2 (2006), 382–418 | DOI | MR | Zbl

[4] Röckner M., Zhang T. S., “Uniqueness of generalized Schrödinger operators, II”, J. Funct. Anal., 119:2 (1994), 455–467 | DOI | MR | Zbl

[5] Cattiaux P., Fradon M., “Entropy, reversible diffusion processes and Markov uniqueness”, J. Funct. Anal., 138:1 (1996), 243–272 | DOI | MR | Zbl

[6] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | MR | Zbl

[7] Kuwae K., Shioya T., “Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry”, Comm. Anal. Geom., 11:4 (2003), 599–673 | MR | Zbl

[8] Bogachev V. I., Osnovy teorii mery, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M., Izhevsk, 2006, 584 pp.; 688 с.

[9] Ma Z.-M., Röckner M., Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer-Verlag, Berlin, 1992, 209 pp. | MR

[10] Bogachev V. I., “Differentiable measures and the Malliavin calculus”, J. Math. Sci. (New York), 87:4 (1997), 3577–3731 | DOI | MR | Zbl

[11] Camar-Eddine M., Seppecher P., “Closure of the set of diffusion functionals with respect to the Mosco-convergence”, Math. Models Methods Appl. Sci., 12:8 (2002), 1153–1176 | DOI | MR | Zbl

[12] Pugachev O. V., “O zamykaemosti klassicheskikh form Dirikhle na ploskosti”, Dokl. AN, 380:3 (2001), 315–318 | MR | Zbl

[13] Pugachev O. V., “On closability of classical Dirichlet forms”, J. Funct. Anal., 207:2 (2004), 330–343 | DOI | MR | Zbl

[14] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR

[15] Röckner M., Zhang T. S., “Uniqueness of generalized Schrödinger operators and applications”, J. Funct. Anal., 105:1 (1992), 187–231 | DOI | MR | Zbl

[16] Eberle A., Uniqueness and Nonuniqueness of Semigroups Generated by Singular Diffusion Operators, Lecture Notes in Math., 1718, Springer-Verlag, Berlin, 1999 | MR | Zbl