On Continuous Time Ergodic Filters with Wrong Initial Data
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 240-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of nonuniformly ergodic Markov diffusions, under observations subject to a Wiener noise, it is shown that a wrong initial data is forgotten with a certain rate in certain topologies.
Keywords: Markov diffusion filters, initial data robustness, misspecified problems.
@article{TVP_2008_53_2_a2,
     author = {A. Yu. Veretennikov and M. L. Kleptsyna},
     title = {On {Continuous} {Time} {Ergodic} {Filters} with {Wrong} {Initial} {Data}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {240--276},
     year = {2008},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
AU  - M. L. Kleptsyna
TI  - On Continuous Time Ergodic Filters with Wrong Initial Data
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 240
EP  - 276
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a2/
LA  - ru
ID  - TVP_2008_53_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%A M. L. Kleptsyna
%T On Continuous Time Ergodic Filters with Wrong Initial Data
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 240-276
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a2/
%G ru
%F TVP_2008_53_2_a2
A. Yu. Veretennikov; M. L. Kleptsyna. On Continuous Time Ergodic Filters with Wrong Initial Data. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 240-276. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a2/

[1] Atar R., Zeitouni O., “Exponential stability for nonlinear filtering”, Ann. Inst. H. Poincaré, 33:6 (1997), 697–725 | DOI | MR | Zbl

[2] Baxendale P., Chigansky P., Liptser R., “Asymptotic stability of the Wonham filter: ergodic and nonergodic signals”, SIAM J. Control Optim., 43:2 (2004), 643–669 | DOI | MR | Zbl

[3] Budhiraja A., Ocone D., “Exponential stability in discrete-time filters for bounded observation noise”, Systems Control Lett., 30:4 (1997), 185–193 | DOI | MR | Zbl

[4] Budhiraja A., Ocone D., “Exponential stability for discrete-time filtering for nonergodic signals”, Stochastic Process. Appl., 82:2 (1999), 245–257 | DOI | MR | Zbl

[5] Chigansky P., Liptser R., “Stability of nonlinear filters in nonmixing case”, Ann. Appl. Probab., 14:4 (2004), 2038–2056 | DOI | MR | Zbl

[6] Clark J. M. C., Crisan D., “On a robust version of the integral representation formula of nonlinear filtering”, Probab. Theory Related Fields, 133:1 (2005), 43–56 | DOI | MR | Zbl

[7] Del Moral P., Guionnet A., “On the stability of interacting processes with applications to filtering and genetic algorithms”, Ann. Inst. H. Poincaré, 37:2 (2001), 155–194 | DOI | MR | Zbl

[8] Gulinsky O. V., Veretennikov A. Yu., Large deviations for discrete-time processes with averaging, VSP, Utrecht, 1993, 186 pp. | MR | Zbl

[9] Kallianpur G., Stokhasticheskaya teoriya filtratsii, Nauka, M., 1987, 318 pp. | MR | Zbl

[10] Kleptsyna M. L., Veretennikov A. Yu., “On discrete time ergodic filters with wrong initial data”, Probab. Theory Related Fields, 141:3–4 (2008), 411–444 | DOI | MR | Zbl

[11] Krasnosel'skii M. A., Lifshits Je. A., Sobolev A. V., Positive Linear Systems. The Method of Positive Operators, Heldermann, Berlin, 1986, 255 pp. | MR

[12] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977, 399 pp. | MR

[13] Krylov N. V., Nonlinear elliptic and parabolic equations of the second order, Reidel, Dordrecht, 1987, 462 pp. | MR | Zbl

[14] Krylov N. V., “O regulyarnosti uslovnykh veroyatnostei dlya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 18:1 (1973), 151–155 | Zbl

[15] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR, 44:1 (1980), 161–175 | MR | Zbl

[16] Kunita H., “Asymptotic behavior of the nonlinear filtering errors of Markov processes”, J. Multivariate Anal., 1 (1971), 365–393 | DOI | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[18] Le Gland F., Oudjane N., “A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals”, Stochastic Process. Appl., 106:2 (2003), 279–316 | DOI | MR

[19] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[20] Ocone D., Pardoux E., “Asymptotic stability of the optimal filter with respect to its initial condition”, SIAM J. Control Optim., 34:1 (1996), 226–243 | DOI | MR | Zbl

[21] Parthasarathy K. R., Probability measures on metric spaces, Academic Press, New York, London, 1967, 276 pp. | MR | Zbl

[22] Stannat W., “Stability of the filter equation for a time-dependent signal on $\mathbb R^d$”, Appl. Math. Optim., 52:1 (2005), 39–71 | DOI | MR | Zbl

[23] Tanaka H., “Note on continuous additive functionals of the 1-dimensional Brownian path”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 1 (1963), 251–257 | DOI | MR | Zbl

[24] Veretennikov A. Yu., “Parabolicheskie uravneniya i stokhasticheskie uravneniya Ito s koeffitsientami, razryvnymi po vremeni”, Matem. zametki, 31:4 (1982), 549–557 | MR | Zbl

[25] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh uravnenii”, Teoriya veroyatn. i ee primen., 32:2 (1987), 299–308 | MR

[26] Veretennikov A. Yu., “O polinomialnom peremeshivanii i skorosti skhodimosti dlya stokhasticheskikh differentsialnykh i raznostnykh uravnenii”, Teoriya veroyatn. i ee primen., 44:2 (1999), 312–327 | MR | Zbl