Mots-clés : spatial and spatio-temporal data
@article{TVP_2008_53_2_a17,
author = {E. Porcu and R. Crujeiras and J. Mateu and W. Gonzalez-Manteiga},
title = {On the {Second} {Order} {Properties} of the {Multidimensional} {Periodogram} for {Regularly} {Spaced} {Data}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {403--410},
year = {2008},
volume = {53},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/}
}
TY - JOUR AU - E. Porcu AU - R. Crujeiras AU - J. Mateu AU - W. Gonzalez-Manteiga TI - On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 403 EP - 410 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/ LA - en ID - TVP_2008_53_2_a17 ER -
%0 Journal Article %A E. Porcu %A R. Crujeiras %A J. Mateu %A W. Gonzalez-Manteiga %T On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data %J Teoriâ veroâtnostej i ee primeneniâ %D 2008 %P 403-410 %V 53 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/ %G en %F TVP_2008_53_2_a17
E. Porcu; R. Crujeiras; J. Mateu; W. Gonzalez-Manteiga. On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 403-410. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/
[1] Bochner S., “Monotone Funktionen, Stieltjessche Integrale und Harmonische Analyse”, Math. Ann., 108 (1933), 378–410 | DOI | MR | Zbl
[2] Brillinger D. R., “The frequency analysis of relations between stationary spatial series”, Proceedings of the 12th Biennial Seminar on Time Series, Stochastic Processes, Convexity, Combinatorics, Canadian Mathematical Congress, ed. R. Pyke, Montreal, 1970, 39–81 | MR | Zbl
[3] Brillinger D. R., “Fourier analysis of stationary processes”, Proc. IEEE, 62 (1974), 1628–1643 | DOI | MR
[4] Brillinger D. R., Time Series. Data Analysis and Theory, Holden-Day, Oakland, CA, 1981, 540 pp. | MR | Zbl
[5] Christakos G., Random Field Models in Earth Sciences, Academic Press, San Diego, 1992, 474 pp.
[6] Fernández J., Rey A., Carballeira A., “An extended study of heavy metal deposition in Galicia based on moss analysis”, Sci. Total Environment, 254 (2000), 31–44 | DOI
[7] Fuentes M., Smith R., A new class of models for nonstationary processes, Research report, North Carolina State University, 2001
[8] Fuentes M., “Interpolation of nonstationary air pollution processes: a spatial spectral approach”, Statist. Model., 2:4 (2002), 281–298 | DOI | MR | Zbl
[9] Fuentes M., “Spectral methods for nonstationary spatial processes”, Biometrika, 89 (2002), 197–210 | DOI | MR | Zbl
[10] Fuentes M., Spectral methods to approximate the likelihood for irregularly spaced spatial data, Technical Report, North Carolina State Univerity, 2004
[11] Mercer W. B., Hall A. D., “The experimental error or field trials”, J. Agricultural Sci., 4 (1991), 107–132 | DOI
[12] Priestley M. B., Spectral Analysis and Time Series, v. 1, 2, Academic Press, London, New York, 1981, 890 pp. | MR | Zbl
[13] Renshaw E., “Two-dimensional spectral analysis for marked point processes”, Biom. J., 44:6 (2002), 718–745 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[14] Robinson P. M., “Nonparametric spectrum estimation for spatial data”, J. Statist. Plann. Inference, 137:3 (2007), 1024–1034 | DOI | MR | Zbl
[15] Stein M. L., “Fixed-domain asymptotics for spatial periodograms”, J. Amer. Statist. Assoc., 90:432 (1995), 1277–1288 | DOI | MR | Zbl
[16] Stein M., Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York, 1999, 247 pp. | MR
[17] Yaglom A. M., Correlation Theory of Stationary and Related Random Functions, v. II, Springer Series in Statistics, Supplementary Notes and References, Springer-Verlag, New York, 1987, 258 pp. | MR