On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 403-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently there is growing interest in improving the level of knowledge of spatial and spatio-temporal processes using spectral techniques. The properties of the estimator of the spectral density, the periodogram, have been broadly studied under different asymptotic assumptions that imply a valuable loss of information about the behavior of the underlying process that is often observed on a grid of small size and with sparse data. In this scheme, neither increasing domain nor shrinking asymptotics applies. The goal of this paper is to study the properties of the multidimensional periodogram, under both cases of tapering and no tapering, and the assumption of finite dimensionality of the regular lattice where the process is observed. We present some theoretical results regarding the second order properties of the multidimensional periodogram. Furthermore, we show that, independent of the tapering procedure, periodogram values present a dependence structure which is not stationary and which particularly depends on weights which are proportional to the Bartlett kernel or the chosen taper.
Keywords: periodogram, regular lattice data, spectral density, tapering.
Mots-clés : spatial and spatio-temporal data
@article{TVP_2008_53_2_a17,
     author = {E. Porcu and R. Crujeiras and J. Mateu and W. Gonzalez-Manteiga},
     title = {On the {Second} {Order} {Properties} of the {Multidimensional} {Periodogram} for {Regularly} {Spaced} {Data}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {403--410},
     year = {2008},
     volume = {53},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/}
}
TY  - JOUR
AU  - E. Porcu
AU  - R. Crujeiras
AU  - J. Mateu
AU  - W. Gonzalez-Manteiga
TI  - On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 403
EP  - 410
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/
LA  - en
ID  - TVP_2008_53_2_a17
ER  - 
%0 Journal Article
%A E. Porcu
%A R. Crujeiras
%A J. Mateu
%A W. Gonzalez-Manteiga
%T On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 403-410
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/
%G en
%F TVP_2008_53_2_a17
E. Porcu; R. Crujeiras; J. Mateu; W. Gonzalez-Manteiga. On the Second Order Properties of the Multidimensional Periodogram for Regularly Spaced Data. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 403-410. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a17/

[1] Bochner S., “Monotone Funktionen, Stieltjessche Integrale und Harmonische Analyse”, Math. Ann., 108 (1933), 378–410 | DOI | MR | Zbl

[2] Brillinger D. R., “The frequency analysis of relations between stationary spatial series”, Proceedings of the 12th Biennial Seminar on Time Series, Stochastic Processes, Convexity, Combinatorics, Canadian Mathematical Congress, ed. R. Pyke, Montreal, 1970, 39–81 | MR | Zbl

[3] Brillinger D. R., “Fourier analysis of stationary processes”, Proc. IEEE, 62 (1974), 1628–1643 | DOI | MR

[4] Brillinger D. R., Time Series. Data Analysis and Theory, Holden-Day, Oakland, CA, 1981, 540 pp. | MR | Zbl

[5] Christakos G., Random Field Models in Earth Sciences, Academic Press, San Diego, 1992, 474 pp.

[6] Fernández J., Rey A., Carballeira A., “An extended study of heavy metal deposition in Galicia based on moss analysis”, Sci. Total Environment, 254 (2000), 31–44 | DOI

[7] Fuentes M., Smith R., A new class of models for nonstationary processes, Research report, North Carolina State University, 2001

[8] Fuentes M., “Interpolation of nonstationary air pollution processes: a spatial spectral approach”, Statist. Model., 2:4 (2002), 281–298 | DOI | MR | Zbl

[9] Fuentes M., “Spectral methods for nonstationary spatial processes”, Biometrika, 89 (2002), 197–210 | DOI | MR | Zbl

[10] Fuentes M., Spectral methods to approximate the likelihood for irregularly spaced spatial data, Technical Report, North Carolina State Univerity, 2004

[11] Mercer W. B., Hall A. D., “The experimental error or field trials”, J. Agricultural Sci., 4 (1991), 107–132 | DOI

[12] Priestley M. B., Spectral Analysis and Time Series, v. 1, 2, Academic Press, London, New York, 1981, 890 pp. | MR | Zbl

[13] Renshaw E., “Two-dimensional spectral analysis for marked point processes”, Biom. J., 44:6 (2002), 718–745 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[14] Robinson P. M., “Nonparametric spectrum estimation for spatial data”, J. Statist. Plann. Inference, 137:3 (2007), 1024–1034 | DOI | MR | Zbl

[15] Stein M. L., “Fixed-domain asymptotics for spatial periodograms”, J. Amer. Statist. Assoc., 90:432 (1995), 1277–1288 | DOI | MR | Zbl

[16] Stein M., Interpolation of Spatial Data: Some Theory for Kriging, Springer-Verlag, New York, 1999, 247 pp. | MR

[17] Yaglom A. M., Correlation Theory of Stationary and Related Random Functions, v. II, Springer Series in Statistics, Supplementary Notes and References, Springer-Verlag, New York, 1987, 258 pp. | MR