On Gaussian Measure of Balls in a Hilbert Space
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 382-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be a centered Gaussian random vector taking values in a separable Hilbert space $H$, and let $a\in H$. We investigate the behavior of the density and the distribution function of a noncentered ball $\|X-a\|^2$ by means of its Laplace transform and obtain the results with an optimal estimate of the accuracy rate. As a tool we use a “local limit theorems” approach.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
small balls, Gaussian measure, Hilbert space
Mots-clés : Laplace transform.
                    
                  
                
                
                Mots-clés : Laplace transform.
@article{TVP_2008_53_2_a13,
     author = {L. V. Rozovskii},
     title = {On {Gaussian} {Measure} of {Balls} in a {Hilbert} {Space}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--390},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a13/}
}
                      
                      
                    L. V. Rozovskii. On Gaussian Measure of Balls in a Hilbert Space. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 382-390. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a13/
