On Gaussian Measure of Balls in a Hilbert Space
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 382-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a centered Gaussian random vector taking values in a separable Hilbert space $H$, and let $a\in H$. We investigate the behavior of the density and the distribution function of a noncentered ball $\|X-a\|^2$ by means of its Laplace transform and obtain the results with an optimal estimate of the accuracy rate. As a tool we use a “local limit theorems” approach.
Keywords: small balls, Gaussian measure, Hilbert space
Mots-clés : Laplace transform.
@article{TVP_2008_53_2_a13,
     author = {L. V. Rozovskii},
     title = {On {Gaussian} {Measure} of {Balls} in a {Hilbert} {Space}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--390},
     year = {2008},
     volume = {53},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a13/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On Gaussian Measure of Balls in a Hilbert Space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 382
EP  - 390
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a13/
LA  - ru
ID  - TVP_2008_53_2_a13
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On Gaussian Measure of Balls in a Hilbert Space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 382-390
%V 53
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a13/
%G ru
%F TVP_2008_53_2_a13
L. V. Rozovskii. On Gaussian Measure of Balls in a Hilbert Space. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 2, pp. 382-390. http://geodesic.mathdoc.fr/item/TVP_2008_53_2_a13/

[1] Albin J. M. P., “Minima of $H$-valued Gaussian processes”, Ann. Probab., 24:2 (1996), 788–824 | DOI | MR | Zbl

[2] Dembo A., Mayer-Wolf E., Zeitouni O., “Exact behavior of Gaussian seminorms”, Probab. Statist. Lett., 23:3 (1995), 275–280 | DOI | MR | Zbl

[3] Hoffman-Jørgensen J., Shepp L. A., Dudley R. M., “On the lower tail of Gaussian seminorms”, Ann. Probab., 7:2 (1979), 319–342 | DOI | MR | Zbl

[4] Ibragimov I. A., “O veroyatnostyakh popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zapiski nauch. sem. LOMI, 85, 1979, 75–93 | MR | Zbl

[5] Kuelbs J., Li W. V., “Metric entropy and the small balls problem for Gaussian measures”, J. Funct. Anal., 116:1 (1993), 133–157 | DOI | MR | Zbl

[6] Kuelbs J., Li W. V., Linde W., “The Gaussian measures of shifted balls”, Probab. Theory Related Fields, 98:2 (1994), 143–162 | DOI | MR | Zbl

[7] Li W. V., “On the lower tail of Gaussian measures on $l_p$”, Progr. Probab., 30 (1992), 106–117 | MR

[8] Li W. V., Linde W., “Small ball problems for noncentered Gaussian measures”, Probab. Math. Statist., 14:2 (1993), 231–251 | MR | Zbl

[9] Lifshits M. A., “On the lower tail probabilities of some random series”, Ann. Probab., 25:1 (1997), 424–442 | DOI | MR | Zbl

[10] Mayer-Wolf E., Zeitouni O., “The probability of small Gaussian ellipsoids and assosiated conditional moments”, Ann. Probab., 21:1 (2006), 14–24 | DOI | MR

[11] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR

[12] Sytaya G. N., “Ob asimptoticheskom predstavlenii gaussovoi mery v gilbertovom prostranstve”, Teoriya stokhasticheskikh protsessov, 2 (1974), 94–104

[13] Zolotarev V. M., “Ob odnoi asimptotike gaussovoi mery v $l_2$”, Problemy ustoichivosti stokhasticheskkh modelei, VNIISI, M., 1984, 54–58 | MR

[14] Kristoff G., Prokhorov Yu. V., Ulyanov V. V., “O raspredelenii kvadratichnykh form ot gaussovskikh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 40:2 (1995), 301–312 | MR

[15] Jaschke S., Klüppelberg C., Lindner A., “Asymptotic behavior of tails and quantiles of quadratic forms of Gaussian vectors”, J. Multivariate Anal., 88 (2004), 252–273 | DOI | MR | Zbl

[16] Rozovskii L. V., “O veroyatnostyakh malykh uklonenii polozhitelnykh sluchainykh velichin”, Zapiski nauch. sem. POMI, 320, 2004, 150–159