Stochastic Synchronization in a Large System of Identical Particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 162-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a basic stochastic particle system consisting of $N$ identical particles with isotropic $k$-particle synchronization, ${k\ge 2}$. In the limit when both the number of particles $N$ and the time $t=t(N)$ grow to infinity we study an asymptotic behavior of a coordinate spread of the particle system. We describe three time stages of $t(N)$ for which a qualitative behavior of the system is completely different. Moreover, we discuss the case when a spread of the initial configuration depends on $N$ and increases to infinity as $N\to\infty$.
Keywords: interacting particle systems, multidimensional Markov processes, stochastic synchronization, mean-field models.
Mots-clés : $k$-particle interactions
@article{TVP_2008_53_1_a9,
     author = {A. D. Manita},
     title = {Stochastic {Synchronization} in a {Large} {System} of {Identical} {Particles}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {162--168},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a9/}
}
TY  - JOUR
AU  - A. D. Manita
TI  - Stochastic Synchronization in a Large System of Identical Particles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 162
EP  - 168
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a9/
LA  - ru
ID  - TVP_2008_53_1_a9
ER  - 
%0 Journal Article
%A A. D. Manita
%T Stochastic Synchronization in a Large System of Identical Particles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 162-168
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a9/
%G ru
%F TVP_2008_53_1_a9
A. D. Manita. Stochastic Synchronization in a Large System of Identical Particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 162-168. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a9/