Stable Processes, Mixing, and Distributional Properties.~II
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 124-150
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In Part I of this paper [Theory Probab. Appl., 52 (2008), pp. 580–593], we considered real-valued stable Lévy processes $ (S_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$, where the deterministic numbers $\alpha, \beta, \gamma,\delta$ are, respectively, the stability, skewness, scale, and drift coefficients. Then, allowing $ \beta, \gamma,\delta $ to be random, we introduced the notion of mixed stable processes $ (M_t^{\alpha, \beta, \gamma,\delta})_{t\ge 0}$ and gave a structure of conditionally Lévy processes. In this second part, we provide controls of the (nonmixed) densities $ G_t^{\alpha, \beta, \gamma,\delta}(x)$ when $ x $ goes to the extremities of the support of $ G_t^{\alpha, \beta, \gamma,\delta} $ uniformly in $t,\beta,\gamma,\delta $ and present a Mellin duplication formula on these densities, relative to the stability coefficient $\alpha $. The new representations of the densities give an explicit expression of all the moments of order $0\rho\alpha$. We also study the densities $x\mapsto H_s(x)$ of mixed stable variables $M_s^{\alpha,\beta_s,\gamma_s,\delta_s}$ (by families of random variables $(\beta_s,\gamma_s,\delta_s)_{s\in S}$) and give their asymptotic controls in the space variable $x$ uniformly in $s\in S$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
stable processes, conditionally PIIS, Mellin convolution, density, derivatives, uniform controls.
                    
                    
                    
                  
                
                
                @article{TVP_2008_53_1_a6,
     author = {W. Jedidi},
     title = {Stable {Processes,} {Mixing,} and {Distributional} {Properties.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {124--150},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a6/}
}
                      
                      
                    W. Jedidi. Stable Processes, Mixing, and Distributional Properties.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 124-150. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a6/
