What is the Least Expected Number of Real Roots of a Random Polynomial?
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 40-58

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_n$ be a random polynomial with coefficients. Denote by $\mathcal{N}(G_n)$ the number of real roots of $G_n$. We find the minimum of $\sup_{n\in{N}}E\mathcal{N}(G_n)$ over different classes of coefficient distributions.
Mots-clés : random polynomial
Keywords: expected number of real roots.
@article{TVP_2008_53_1_a2,
     author = {D. N. Zaporozhets and A. I. Nazarov},
     title = {What is the {Least} {Expected} {Number} of {Real} {Roots} of a {Random} {Polynomial?}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {40--58},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/}
}
TY  - JOUR
AU  - D. N. Zaporozhets
AU  - A. I. Nazarov
TI  - What is the Least Expected Number of Real Roots of a Random Polynomial?
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 40
EP  - 58
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/
LA  - ru
ID  - TVP_2008_53_1_a2
ER  - 
%0 Journal Article
%A D. N. Zaporozhets
%A A. I. Nazarov
%T What is the Least Expected Number of Real Roots of a Random Polynomial?
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 40-58
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/
%G ru
%F TVP_2008_53_1_a2
D. N. Zaporozhets; A. I. Nazarov. What is the Least Expected Number of Real Roots of a Random Polynomial?. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 40-58. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/