What is the Least Expected Number of Real Roots of a Random Polynomial?
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 40-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G_n$ be a random polynomial with coefficients. Denote by $\mathcal{N}(G_n)$ the number of real roots of $G_n$. We find the minimum of $\sup_{n\in{N}}E\mathcal{N}(G_n)$ over different classes of coefficient distributions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
random polynomial
Keywords: expected number of real roots.
                    
                  
                
                
                Keywords: expected number of real roots.
@article{TVP_2008_53_1_a2,
     author = {D. N. Zaporozhets and A. I. Nazarov},
     title = {What is the {Least} {Expected} {Number} of {Real} {Roots} of a {Random} {Polynomial?}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {40--58},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/}
}
                      
                      
                    TY - JOUR AU - D. N. Zaporozhets AU - A. I. Nazarov TI - What is the Least Expected Number of Real Roots of a Random Polynomial? JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 40 EP - 58 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/ LA - ru ID - TVP_2008_53_1_a2 ER -
D. N. Zaporozhets; A. I. Nazarov. What is the Least Expected Number of Real Roots of a Random Polynomial?. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 40-58. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a2/
