Estimation of the Constant in a Burkholder Inequality for Supermartingales and Martingales
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 172-178
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Burkholder-type inequality for supermartingales and martingales is proved. The proof reduces to a refinement of the corresponding arguments by S. V. Nagaev, who obtained the inequality with a greater value of the upper bound.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
expectation, supermartingale, Burkholder inequality
Mots-clés : martingale, moments.
                    
                  
                
                
                Mots-clés : martingale, moments.
@article{TVP_2008_53_1_a11,
     author = {E. L. Presman},
     title = {Estimation of the {Constant} in a {Burkholder} {Inequality} for {Supermartingales} and {Martingales}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {172--178},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a11/}
}
                      
                      
                    TY - JOUR AU - E. L. Presman TI - Estimation of the Constant in a Burkholder Inequality for Supermartingales and Martingales JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 172 EP - 178 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a11/ LA - ru ID - TVP_2008_53_1_a11 ER -
E. L. Presman. Estimation of the Constant in a Burkholder Inequality for Supermartingales and Martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 172-178. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a11/
