On Two Estimates of a Risk Measure
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 168-172
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the asymptotic behavior of two different empirical estimates of a certain risk measure (minimal V@R), a functional having the form MINVR@$R_{\alpha}(X)=-E\min(X_1,\dots,X_{\alpha})$, where $X_1,\dots,X_{\alpha} $ are independent copies of $X$.
Keywords:
weighted V@R, coherent risk measure, minimal V@R, limit theorems for $L$-statistics.
@article{TVP_2008_53_1_a10,
author = {D. V. Orlov},
title = {On {Two} {Estimates} of a {Risk} {Measure}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {168--172},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a10/}
}
D. V. Orlov. On Two Estimates of a Risk Measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 168-172. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a10/