On Two Estimates of a Risk Measure
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 168-172

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the asymptotic behavior of two different empirical estimates of a certain risk measure (minimal V@R), a functional having the form MINVR@$R_{\alpha}(X)=-E\min(X_1,\dots,X_{\alpha})$, where $X_1,\dots,X_{\alpha} $ are independent copies of $X$.
Keywords: weighted V@R, coherent risk measure, minimal V@R, limit theorems for $L$-statistics.
@article{TVP_2008_53_1_a10,
     author = {D. V. Orlov},
     title = {On {Two} {Estimates} of a {Risk} {Measure}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {168--172},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a10/}
}
TY  - JOUR
AU  - D. V. Orlov
TI  - On Two Estimates of a Risk Measure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2008
SP  - 168
EP  - 172
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a10/
LA  - ru
ID  - TVP_2008_53_1_a10
ER  - 
%0 Journal Article
%A D. V. Orlov
%T On Two Estimates of a Risk Measure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2008
%P 168-172
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a10/
%G ru
%F TVP_2008_53_1_a10
D. V. Orlov. On Two Estimates of a Risk Measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 1, pp. 168-172. http://geodesic.mathdoc.fr/item/TVP_2008_53_1_a10/