@article{TVP_2007_52_4_a7,
author = {A. Philippe and D. Surgailis and M.-C. Viano},
title = {Time-Varying {Fractionally} {Integrated} {Processes} with {Nonstationary} {Long} {Memory}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {768--792},
year = {2007},
volume = {52},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/}
}
TY - JOUR AU - A. Philippe AU - D. Surgailis AU - M.-C. Viano TI - Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 768 EP - 792 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/ LA - en ID - TVP_2007_52_4_a7 ER -
A. Philippe; D. Surgailis; M.-C. Viano. Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 768-792. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/
[1] Benassi A., Cohen S., Istas J., “Identifying the multifractional function of a Gaussian process”, Statist. Probab. Lett., 39:4 (1998), 337–345 | DOI | MR | Zbl
[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR
[3] Brockwell P. J., Davis R. A., Time Series: Theory and Methods, Springer-Verlag, New York, 1991, 577 pp. | MR
[4] Bružaitė K., Surgailis D., Vaičiulis M., “Time-varying fractionally integrated processes with finite or infinite variance and nonstationary long memory”, Acta Appl. Math., 96:1–3 (2007), 99–118 | MR | Zbl
[5] Cox D. R., “Long-range dependence: A review”, Statistics: An Appraisal, eds. H. A. David and H. T. David, Iowa State Univ. Press, Iowa, 1984, 55–74
[6] Davydov Yu. A., “Printsip invariantnosti dlya statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 15:3 (1970), 498–509 | MR | Zbl
[7] Dehling H., Philipp W., “Empirical process techniques for dependent data”, Empirical Process Techniques for Dependent Data, eds. H. Dehling, T. Mikosch, M. Sørensen, Birkhäuser, Boston, 3–113 | MR | Zbl
[8] Doukhan P., Oppenheim G., Taqqu M. S. (eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, 716 pp. | MR
[9] Doukhan P., Lang G., Surgailis D., “Randomly fractionally integrated processes”, Liet. Mat. Rink., 47:1 (2007), 3–28 | MR | Zbl
[10] Kutoyants Yu. A., “Razlozhenie otsenki maksimalnogo pravdopodobiya po stepenyam diffuzii”, Teoriya veroyatn. i ee primen., 29:3 (1984), 452–463 | MR | Zbl
[11] Lamperti J., “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl
[12] Lang G., Soulier P., “Convergence de mesures spectrales aléatoires et applications à des principes d'invariance”, Stat. Inference Stoch. Process, 3:1–2 (2000), 41–51 | DOI | MR | Zbl
[13] Marinucci D., Robinson P. M., “Alternative forms of fractional Brownian motion”, J. Statist. Plann. Inference, 80:1–2 (1999), 111–122 | DOI | MR | Zbl
[14] Peltier R., Lévy Véhel J., Multifractional Brownian Motion, Technical report no 2645, INRIA, 1995
[15] Philippe A., Surgailis D., Viano M.-C., “Time-varying fractionally integrated processes with nonstationary long memory”, Pub. IRMA Lille, 61:9 (2004) | MR
[16] Philippe A., Surgailis D., Viano M.-C., “Invariance principle for a class of nonstationary with long memory processes”, C. R. Math. Acad. Sci. Paris, 342:4 (2006), 269–274 | MR | Zbl
[17] Surgailis D., “Non-CLTs: $U$-statistics, multinomial formula and approximations of multiple Itô–Wiener integrals”, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim, and M. S. Taqqu, Birkhäuser, Boston, 2003, 120–142 | MR
[18] Surgailis D., “Stable limits of sums of bounded functions of long memory moving averages with finite variance”, Bernoulli, 10:2 (2004), 327–355 | DOI | MR | Zbl
[19] Surgailis D., “Nonhomogeneous fractional integration and multifractional processes”, Stochastic Process. Appl., 2007 (to appear) | MR