Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 768-792 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two classes $A(d), B(d)$ of time-varying linear filters are introduced, built from a given sequence $d = (d_t, t \in Z) $ of real numbers, and such that, for constant $d_t \equiv d$, $A(d)=B(d) = (I -L)^{-d}$ is the usual fractional differencing operator. The invertibility relations $B (-d)\,A(d) = A(-d) B(d) = I$ are established. We study the asymptotic behavior of the partial sums of the filtered white noise processes $Y_t = A(d)\,G \varepsilon_t$ and $X_t = B(d)\,G \varepsilon_t$, when $d $ admits limits $\lim_{t \to \pm \infty} d_t = d_\pm \in (0,{\frac{1}{2}}) $, $G$ being a short memory filter. We show that the limit of partial sums is a self-similar Gaussian process, depending on $d_\pm$ and on the sum of the coefficients of $G$ only. The limiting process has either asymptotically stationary increments, or asymptotically vanishing increments and smooth sample paths.
Keywords: nonstationary long memory, time-varying fractional integration, partial sums, self-similar processes, asymptotically stationary increments.
@article{TVP_2007_52_4_a7,
     author = {A. Philippe and D. Surgailis and M.-C. Viano},
     title = {Time-Varying {Fractionally} {Integrated} {Processes} with {Nonstationary} {Long} {Memory}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {768--792},
     year = {2007},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/}
}
TY  - JOUR
AU  - A. Philippe
AU  - D. Surgailis
AU  - M.-C. Viano
TI  - Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 768
EP  - 792
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/
LA  - en
ID  - TVP_2007_52_4_a7
ER  - 
%0 Journal Article
%A A. Philippe
%A D. Surgailis
%A M.-C. Viano
%T Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 768-792
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/
%G en
%F TVP_2007_52_4_a7
A. Philippe; D. Surgailis; M.-C. Viano. Time-Varying Fractionally Integrated Processes with Nonstationary Long Memory. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 768-792. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a7/

[1] Benassi A., Cohen S., Istas J., “Identifying the multifractional function of a Gaussian process”, Statist. Probab. Lett., 39:4 (1998), 337–345 | DOI | MR | Zbl

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR

[3] Brockwell P. J., Davis R. A., Time Series: Theory and Methods, Springer-Verlag, New York, 1991, 577 pp. | MR

[4] Bružaitė K., Surgailis D., Vaičiulis M., “Time-varying fractionally integrated processes with finite or infinite variance and nonstationary long memory”, Acta Appl. Math., 96:1–3 (2007), 99–118 | MR | Zbl

[5] Cox D. R., “Long-range dependence: A review”, Statistics: An Appraisal, eds. H. A. David and H. T. David, Iowa State Univ. Press, Iowa, 1984, 55–74

[6] Davydov Yu. A., “Printsip invariantnosti dlya statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 15:3 (1970), 498–509 | MR | Zbl

[7] Dehling H., Philipp W., “Empirical process techniques for dependent data”, Empirical Process Techniques for Dependent Data, eds. H. Dehling, T. Mikosch, M. Sørensen, Birkhäuser, Boston, 3–113 | MR | Zbl

[8] Doukhan P., Oppenheim G., Taqqu M. S. (eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, 716 pp. | MR

[9] Doukhan P., Lang G., Surgailis D., “Randomly fractionally integrated processes”, Liet. Mat. Rink., 47:1 (2007), 3–28 | MR | Zbl

[10] Kutoyants Yu. A., “Razlozhenie otsenki maksimalnogo pravdopodobiya po stepenyam diffuzii”, Teoriya veroyatn. i ee primen., 29:3 (1984), 452–463 | MR | Zbl

[11] Lamperti J., “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl

[12] Lang G., Soulier P., “Convergence de mesures spectrales aléatoires et applications à des principes d'invariance”, Stat. Inference Stoch. Process, 3:1–2 (2000), 41–51 | DOI | MR | Zbl

[13] Marinucci D., Robinson P. M., “Alternative forms of fractional Brownian motion”, J. Statist. Plann. Inference, 80:1–2 (1999), 111–122 | DOI | MR | Zbl

[14] Peltier R., Lévy Véhel J., Multifractional Brownian Motion, Technical report no 2645, INRIA, 1995

[15] Philippe A., Surgailis D., Viano M.-C., “Time-varying fractionally integrated processes with nonstationary long memory”, Pub. IRMA Lille, 61:9 (2004) | MR

[16] Philippe A., Surgailis D., Viano M.-C., “Invariance principle for a class of nonstationary with long memory processes”, C. R. Math. Acad. Sci. Paris, 342:4 (2006), 269–274 | MR | Zbl

[17] Surgailis D., “Non-CLTs: $U$-statistics, multinomial formula and approximations of multiple Itô–Wiener integrals”, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim, and M. S. Taqqu, Birkhäuser, Boston, 2003, 120–142 | MR

[18] Surgailis D., “Stable limits of sums of bounded functions of long memory moving averages with finite variance”, Bernoulli, 10:2 (2004), 327–355 | DOI | MR | Zbl

[19] Surgailis D., “Nonhomogeneous fractional integration and multifractional processes”, Stochastic Process. Appl., 2007 (to appear) | MR