Compact Law of the Iterated Logarithm for Matrix-Normalized Sums of Random Vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 752-767 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(X_n)_{n\ge 1}$ be a sequence of independent centered random vectors in $R^d$. We give conditions under which the sequence $S_n=\sum_{i=1}^nX_i$ normalized by a matricial sequence $(H_n)$ satisfies a compact law of the iterated logarithm. As an application of this result, we obtain the compact law of the iterated logarithm for $B_n^{-1/2}S_n$ and for $\Delta_n^{-1/2}S_n$, where $B_n$ is the covariance matrix of $S_n$, and where $\Delta_n$ is the diagonal matrix whose $j$th diagonal term is the $j$th diagonal term of $B_n$; the eigenvalues of $B_n$ may go to infinity with different rates, but their iterated logarithms have to be equivalent.
Keywords: compact law of the iterated logarithm, matrix normings, sums of independent vectors.
@article{TVP_2007_52_4_a6,
     author = {A. Mokkadem and M. Pelletier},
     title = {Compact {Law} of the {Iterated} {Logarithm} for {Matrix-Normalized} {Sums} of {Random} {Vectors}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {752--767},
     year = {2007},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a6/}
}
TY  - JOUR
AU  - A. Mokkadem
AU  - M. Pelletier
TI  - Compact Law of the Iterated Logarithm for Matrix-Normalized Sums of Random Vectors
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 752
EP  - 767
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a6/
LA  - en
ID  - TVP_2007_52_4_a6
ER  - 
%0 Journal Article
%A A. Mokkadem
%A M. Pelletier
%T Compact Law of the Iterated Logarithm for Matrix-Normalized Sums of Random Vectors
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 752-767
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a6/
%G en
%F TVP_2007_52_4_a6
A. Mokkadem; M. Pelletier. Compact Law of the Iterated Logarithm for Matrix-Normalized Sums of Random Vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 752-767. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a6/

[1] Bkhattachariya R. N., Rao R. Ranga, Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982, 286 pp. | MR

[2] Chen X., “On the law of the iterated logarithm for independent Banach space valued random variables”, Ann. Probab., 21:4 (1993), 1991–2011 | DOI | MR | Zbl

[3] Cuzick J., “A strong law for weighted sums of i.i.d. random variables”, J. Theoret. Probab., 8:3 (1995), 625–641 | DOI | MR | Zbl

[4] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 656 pp. | MR

[5] Koval V. A., “O zakone povtornogo logarifma dlya operatorno-normirovannykh summ sluchainykh vektorov”, Teoriya veroyatn. i ee primen., 46:2 (2001), 381–383 | MR | Zbl

[6] Koval V., “A new law of the iterated logarithm in $R^d$ with application to matrix-normalized sums of random vectors”, J. Theoret. Probab., 15:1 (2002), 249–257 | DOI | MR | Zbl

[7] Ledoux M., Talagrand M., Probability in Banach Spaces, Springer-Verlag, Berlin, 1991, 480 pp. | MR | Zbl

[8] Li D. L., Rao M. B., Wang X. C., “On the strong law of large numbers and the law of the logarithm for weighted sums of independent random variables with multidimensional indices”, J. Multivariate Anal., 52:2 (1995), 181–198 | DOI | MR | Zbl

[9] Li D., Tomkins R. J., “The law of the logarithm for weighted sums of independent random variables”, J. Theoret. Probab., 16:3 (2003), 519–542 | DOI | MR | Zbl

[10] Petrov V. V., Limit Theorems in Probability Theory, Clarendon Press, Oxford Univ. Press, New York, 1995, 292 pp. | MR | Zbl

[11] Rotar V. I., “Neravnomernaya otsenka skorosti skhodimosti v mnogomernoi tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 15:4 (1970), 647–665 | MR | Zbl