Stable Processes, Mixing, and Distributional Properties. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 736-751 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we consider real-valued stable Lйvy processes $(S_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$, where $\alpha,\beta,\gamma,\delta$ are, respectively, the stability, skewness, scale, and drift coefficients. We introduce the notion of mixed stable processes $ (M_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$ (i.e., we allow the skewness, scale, and drift coefficients to be random). Our mixing procedure gives a structure of conditionally Lйvy processes. This procedure permits us to show that the sum of independent stable processes can be expressed via a mixed stable process.
Keywords: stable processes, density, derivatives.
@article{TVP_2007_52_4_a5,
     author = {W. Jedidi},
     title = {Stable {Processes,} {Mixing,} and {Distributional} {Properties.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {736--751},
     year = {2007},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a5/}
}
TY  - JOUR
AU  - W. Jedidi
TI  - Stable Processes, Mixing, and Distributional Properties. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 736
EP  - 751
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a5/
LA  - en
ID  - TVP_2007_52_4_a5
ER  - 
%0 Journal Article
%A W. Jedidi
%T Stable Processes, Mixing, and Distributional Properties. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 736-751
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a5/
%G en
%F TVP_2007_52_4_a5
W. Jedidi. Stable Processes, Mixing, and Distributional Properties. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 736-751. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a5/

[1] Bertoin J., Doney R. A., “Spitzer's conditions for random walks and Lévy Processes”, Ann. Inst. H. Poincaré, 33:2 (1997), 167–178 | DOI | MR | Zbl

[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984, 752 pp. | MR

[3] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.-L., 1949, 264 pp. | MR

[4] Ishikawa Y., “On the lower bound of the density for jump processes in small time”, Bull. Sci. Math., 117:4 (1993), 463–483 | MR | Zbl

[5] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, T. 1, 2, Nauka, M., 1994, 542 pp.; 366 pp.

[6] Jedidi W., PHD thesis, LPMA, Université Paris 6

[7] Lévy P., “Théorie des erreurs de la loi de Gauss et les lois exceptionnelles”, Bull. Soc. Math. France, 52 (1924), 49–85 | MR

[8] Picard J., “Density in small time for Lévy processes”, ESAIM, Probab. Statist., 1 (1997), 357–389 | DOI | MR | Zbl

[9] Sato K. I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[10] Zolotarev V. M., “Raspredelenie superpozitsii bezgranichno delimykh protsessov”, Teoriya veroyatn. i ee primen., 3:2 (1958), 197–200 | MR | Zbl

[11] Zolotarev V. M., One-Dimensional Stable Laws, Amer. Math. Soc., Providence, 1986, 284 pp. | MR | Zbl