On Finite Range Stable-Type Concentration
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 711-735 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We first study the deviation probability $P\{f(X)-E[f(X)]\ge x\}$, where $f$ is a Lipschitz (for the Euclidean norm) function defined on $R^d$ and $X$ is an $\alpha$-stable random vector of index $\alpha \in (1,2)$. We show that this probability is upper bounded by either $e^{-cx^{\alpha/(\alpha-1)}}$ or $e^{-cx^\alpha}$ according to $x$ taking small values or being in a finite range interval. We generalize these finite range concentration inequalities to $P\{F-m(F)\ge x\}$ where $F$ is a stochastic functional on the Poisson space equipped with a stable Lйvy measure of index $\alpha\in(0,2)$ and where $m(F)$ is a median of $F$.
Keywords: concentration of measure phenomenon, stable random vectors, infinite divisibility.
@article{TVP_2007_52_4_a4,
     author = {J.-Ch. Breton and Ch. Houdr\'e},
     title = {On {Finite} {Range} {Stable-Type} {Concentration}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {711--735},
     year = {2007},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a4/}
}
TY  - JOUR
AU  - J.-Ch. Breton
AU  - Ch. Houdré
TI  - On Finite Range Stable-Type Concentration
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 711
EP  - 735
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a4/
LA  - en
ID  - TVP_2007_52_4_a4
ER  - 
%0 Journal Article
%A J.-Ch. Breton
%A Ch. Houdré
%T On Finite Range Stable-Type Concentration
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 711-735
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a4/
%G en
%F TVP_2007_52_4_a4
J.-Ch. Breton; Ch. Houdré. On Finite Range Stable-Type Concentration. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 711-735. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a4/

[1] Breton J.-C., Houdré C., Privault N., “Dimension free and infinite variance tail estimates on Poisson space”, Acta Appl. Math., 95:3 (2007), 151–203 | DOI | MR | Zbl

[2] Houdré C., “Remarks on deviation inequalities for functions of infinitely divisible random vectors”, Ann. Probab., 30:3 (2002), 1223–1237 | DOI | MR | Zbl

[3] Houdré C., Marchal P., “On the concentration of measure phenomenon for stable and related random vectors”, Ann. Probab., 32:2 (2004), 1496–1508 | DOI | MR | Zbl

[4] Marchal P., “Measure concentration for stable laws with index close to 2”, Electron. Comm. Probab., 10 (2005), 29–35 | MR | Zbl