Multidimensional Coherent and Convex Risk Measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 685-710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with multidimensional coherent and convex risk measures. The approach described takes into account risks of changing currency exchange rates and transaction costs. Representation theorems for multidimensional risk measures are proved. The important examples of multidimensional coherent risk measures such as tail V@R and weighted V@R are investigated. Two applications of multidimensional coherent risk measures are considered, i.e., application to the capital allocation problem and to the problem of risk contribution.
Keywords: multidimensional coherent and convex risk measures, matrix of currency exchange rates, cone of currency exchange rates, weighted V@R, risk contribution, extreme elements.
Mots-clés : tail V@R, capital allocation
@article{TVP_2007_52_4_a3,
     author = {A. V. Kulikov},
     title = {Multidimensional {Coherent} and {Convex} {Risk} {Measures}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {685--710},
     year = {2007},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a3/}
}
TY  - JOUR
AU  - A. V. Kulikov
TI  - Multidimensional Coherent and Convex Risk Measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 685
EP  - 710
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a3/
LA  - ru
ID  - TVP_2007_52_4_a3
ER  - 
%0 Journal Article
%A A. V. Kulikov
%T Multidimensional Coherent and Convex Risk Measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 685-710
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a3/
%G ru
%F TVP_2007_52_4_a3
A. V. Kulikov. Multidimensional Coherent and Convex Risk Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 685-710. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a3/

[1] Acerbi C., “Spectral measures of risk: a coherent representation of subjective risk aversion”, J. Banking and Finance, 26 (2002), 1505–1518 | DOI

[2] Acerbi C., Tasche D., “On the coherence of expected shortfall”, J. Banking and Finance, 26:7 (2002), 1487–1503 | DOI

[3] Artzner P., Delbaen F., Eber J.-M., Heath D., “Thinking coherently”, J. Risk, 10:11 (1997), 68–71

[4] Artzner P., Delbaen F., Eber J.-M., Heath D., “Coherent measures of risk”, Math. Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl

[5] Barbati A., Beer G., Hess C., “The Hausdorff metric topology, the Attouch-Wets topology, and the measurability of set-valued functions”, J. Convex Anal., 1:1 (1994), 107–119 | MR | Zbl

[6] Beer G., “A Polish topology for the closed subsets of a Polish space”, Proc. Amer. Math. Soc., 113:4 (1991), 1123–1133 | DOI | MR | Zbl

[7] Burgert C., Rüschendorf L., “Consistent risk measures for portfolio vectors”, Insurance Math. and Econom., 38:2 (2006), 289–297 | DOI | MR | Zbl

[8] Chernyi A. S., “Nakhozhdenie spravedlivoi tseny na osnove kogerentykh mer riska”, Teoriya veroyatn. i ee primen., 50:3 (2007), 506–540

[9] Chernyi A. S., Ravnovesie na osnove kogerentnykh mer riska, Preprint, dostupen na saite http://mech.math.msu.su/~cherny

[10] Cherny A. S., “Weighted VR and its properties”, Finance Stoch., 10:2 (2006), 367–393 | DOI | MR | Zbl

[11] Delbaen F., “Coherent risk measures on general probability spaces”, Advances in Finance Stochastics. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 1–37 | MR | Zbl

[12] Delbaen F., Coherent monetary utility functions. Pisa lecture notes, Preprint, dostupen na saite pod nazvaniem “Pisa lecture notes” http://www.math.ethz.ch/~delbaen

[13] Denault M., “Coherent allocation of risk capital”, J. Risk, 4:1 (2001), 1–34 | DOI | MR

[14] Edvards R., Funktsionalnyi analiz: teoriya i prilozheniya, Mir, M., 1969, 1071 pp.

[15] Fischer T., “Risk capital allocation by coherent risk measures based on one-sided moments”, Insurance Math. Econom., 32:1 (2003), 135–146 | DOI | MR | Zbl

[16] Föllmer H., Schied A., “Convex measures of risk and trading constraints”, Finance Stoch., 6:4 (2002), 429–447 | DOI | MR | Zbl

[17] Föllmer H., Schied A., “Robust preferences and convex measures of risk”, Advances in Finance Stoch. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 39–56 | MR | Zbl

[18] Föllmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, de Gruyter, Berlin, 2004, 459 pp. | MR | Zbl

[19] Frittelli M., Rosazza Gianin E., “Putting order in risk measures”, J. Banking Finance, 26:7 (2002), 1473–1486 | DOI

[20] Grothendieck A., Topological Vector Spaces, Gordon and Breach, New York–London–Paris, 1973, 245 pp. | MR | Zbl

[21] Hess C., “Loi de probabilité des ensembles aléatoires à valeurs fermées dans un espace métrique séparable”, C. R. Acad. Sci. Paris, 296:21 (1983), 883–886 | MR | Zbl

[22] Hess C., Contributions à l'étude de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions, Thèse d'État, Montpellier, 1986

[23] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[24] Jouini E., Meddeb M., Touzi N., “Vector-valued coherent risk measures”, Finance Stoch., 8:4 (2004), 531–552 | DOI | MR | Zbl

[25] Kabanov Yu. M., “Hending and liquidation under transaction costs in currency markets”, Finance Stoch., 3:2 (1999), 237–248 | DOI | MR | Zbl

[26] Kabanov Yu. M., Stricker C., “The Harrison–Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35:2 (2001), 185–196 | DOI | MR | Zbl

[27] Kalkbrenner M., “An axiomatic approach to capital allocation”, Math. Finance, 15:3 (2005), 425–437 | DOI | MR

[28] Kusuoka S., “On law invariant coherent risk measures”, Adv. Math. Econom., 3 (2001), 83–95 | MR

[29] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR

[30] Materon Zh., Sluchainye mnozhestva i integralnaya geometriya, Mir, M., 1978, 318 pp. | MR

[31] Overbeck L., “Allocation of economic capital in loan portfolios”, Lecture Notes in Statist., 147, 1999, 1–17

[32] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967, 257 pp. | MR | Zbl

[33] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl

[34] Schied A., “Risk measures and robust optimization problems”, Stoch. Models, 22:4 (2006), 753–831 | DOI | MR | Zbl

[35] Tasche D., “Expected shortfall and beyond”, J. Banking and Finance, 26 (2002), 1519–1533 | DOI | MR

[36] Zsilinczky L., “Polishness of the Wijsman topology revisited”, Proc. Amer. Math. Soc., 126:12 (1998), 3763–3765 | DOI | MR