Mots-clés : tail V@R, capital allocation
@article{TVP_2007_52_4_a3,
author = {A. V. Kulikov},
title = {Multidimensional {Coherent} and {Convex} {Risk} {Measures}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {685--710},
year = {2007},
volume = {52},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a3/}
}
A. V. Kulikov. Multidimensional Coherent and Convex Risk Measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 685-710. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a3/
[1] Acerbi C., “Spectral measures of risk: a coherent representation of subjective risk aversion”, J. Banking and Finance, 26 (2002), 1505–1518 | DOI
[2] Acerbi C., Tasche D., “On the coherence of expected shortfall”, J. Banking and Finance, 26:7 (2002), 1487–1503 | DOI
[3] Artzner P., Delbaen F., Eber J.-M., Heath D., “Thinking coherently”, J. Risk, 10:11 (1997), 68–71
[4] Artzner P., Delbaen F., Eber J.-M., Heath D., “Coherent measures of risk”, Math. Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl
[5] Barbati A., Beer G., Hess C., “The Hausdorff metric topology, the Attouch-Wets topology, and the measurability of set-valued functions”, J. Convex Anal., 1:1 (1994), 107–119 | MR | Zbl
[6] Beer G., “A Polish topology for the closed subsets of a Polish space”, Proc. Amer. Math. Soc., 113:4 (1991), 1123–1133 | DOI | MR | Zbl
[7] Burgert C., Rüschendorf L., “Consistent risk measures for portfolio vectors”, Insurance Math. and Econom., 38:2 (2006), 289–297 | DOI | MR | Zbl
[8] Chernyi A. S., “Nakhozhdenie spravedlivoi tseny na osnove kogerentykh mer riska”, Teoriya veroyatn. i ee primen., 50:3 (2007), 506–540
[9] Chernyi A. S., Ravnovesie na osnove kogerentnykh mer riska, Preprint, dostupen na saite http://mech.math.msu.su/~cherny
[10] Cherny A. S., “Weighted VR and its properties”, Finance Stoch., 10:2 (2006), 367–393 | DOI | MR | Zbl
[11] Delbaen F., “Coherent risk measures on general probability spaces”, Advances in Finance Stochastics. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 1–37 | MR | Zbl
[12] Delbaen F., Coherent monetary utility functions. Pisa lecture notes, Preprint, dostupen na saite pod nazvaniem “Pisa lecture notes” http://www.math.ethz.ch/~delbaen
[13] Denault M., “Coherent allocation of risk capital”, J. Risk, 4:1 (2001), 1–34 | DOI | MR
[14] Edvards R., Funktsionalnyi analiz: teoriya i prilozheniya, Mir, M., 1969, 1071 pp.
[15] Fischer T., “Risk capital allocation by coherent risk measures based on one-sided moments”, Insurance Math. Econom., 32:1 (2003), 135–146 | DOI | MR | Zbl
[16] Föllmer H., Schied A., “Convex measures of risk and trading constraints”, Finance Stoch., 6:4 (2002), 429–447 | DOI | MR | Zbl
[17] Föllmer H., Schied A., “Robust preferences and convex measures of risk”, Advances in Finance Stoch. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 39–56 | MR | Zbl
[18] Föllmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, de Gruyter, Berlin, 2004, 459 pp. | MR | Zbl
[19] Frittelli M., Rosazza Gianin E., “Putting order in risk measures”, J. Banking Finance, 26:7 (2002), 1473–1486 | DOI
[20] Grothendieck A., Topological Vector Spaces, Gordon and Breach, New York–London–Paris, 1973, 245 pp. | MR | Zbl
[21] Hess C., “Loi de probabilité des ensembles aléatoires à valeurs fermées dans un espace métrique séparable”, C. R. Acad. Sci. Paris, 296:21 (1983), 883–886 | MR | Zbl
[22] Hess C., Contributions à l'étude de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions, Thèse d'État, Montpellier, 1986
[23] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[24] Jouini E., Meddeb M., Touzi N., “Vector-valued coherent risk measures”, Finance Stoch., 8:4 (2004), 531–552 | DOI | MR | Zbl
[25] Kabanov Yu. M., “Hending and liquidation under transaction costs in currency markets”, Finance Stoch., 3:2 (1999), 237–248 | DOI | MR | Zbl
[26] Kabanov Yu. M., Stricker C., “The Harrison–Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35:2 (2001), 185–196 | DOI | MR | Zbl
[27] Kalkbrenner M., “An axiomatic approach to capital allocation”, Math. Finance, 15:3 (2005), 425–437 | DOI | MR
[28] Kusuoka S., “On law invariant coherent risk measures”, Adv. Math. Econom., 3 (2001), 83–95 | MR
[29] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR
[30] Materon Zh., Sluchainye mnozhestva i integralnaya geometriya, Mir, M., 1978, 318 pp. | MR
[31] Overbeck L., “Allocation of economic capital in loan portfolios”, Lecture Notes in Statist., 147, 1999, 1–17
[32] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967, 257 pp. | MR | Zbl
[33] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl
[34] Schied A., “Risk measures and robust optimization problems”, Stoch. Models, 22:4 (2006), 753–831 | DOI | MR | Zbl
[35] Tasche D., “Expected shortfall and beyond”, J. Banking and Finance, 26 (2002), 1519–1533 | DOI | MR
[36] Zsilinczky L., “Polishness of the Wijsman topology revisited”, Proc. Amer. Math. Soc., 126:12 (1998), 3763–3765 | DOI | MR