Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 660-684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a general hyperbolic branching diffusion on a Lobachevsky space $H^d$. The question is to evaluate the Hausdorff dimension of the limiting set on the boundary (i.e., absolute) $\partialH^d$. In the case of a homogeneous branching diffusion, an elegant formula for the Hausdorff dimension was obtained by Lalley and Sellke [Probab. Theory Related Fields, 108 (1997), pp. 171–192] for $d=2$ and by Karpelevich, Pechersky, and Suhov [Commun. Math. Phys., 195 (1998), pp. 627–642] for a general $d$. Later on, Kelbert and Suhov [Probab. Theory Appl., 51 (2007), pp. 155–167] extended the formula to the case where the branching diffusion was in a sense asymptotically homogeneous (i.e., its main relevant parameter, the fission potential, approached a constant limiting value near the absolute). In this paper we show that the Hausdorff dimension of the limiting set can be bounded from above and below in terms of the maximum and minimum points of the fission potential. As in [M. Kelbert and Y. M. Suhov, Probab. Theory Appl., 51 (2007), pp. 155–167], the method is based on properties of the minimal solution to a Sturm–Liouville problem with general potential and elements of the harmonic analysis on $H^d$. We also relate the Hausdorff dimension with properties of recurrence and transience of a branching diffusion, as was defined by Grigoryan and Kelbert [Ann. Probab., 31 (2003), pp. 244–284] on a general-type manifold.
Keywords: hyperbolic space, branching diffusion, transience, recurrence, limiting set, horospheric projection, Sturm-Liouville problems, minimal positive solution.
Mots-clés : Hausdorff dimension, elliptic PDEs
@article{TVP_2007_52_4_a2,
     author = {M. Ya. Kelbert and Yu. M. Sukhov},
     title = {Large-Time {Behavior} of a {Branching} {Diffusion} on a {Hyperbolic} {Space}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {660--684},
     year = {2007},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a2/}
}
TY  - JOUR
AU  - M. Ya. Kelbert
AU  - Yu. M. Sukhov
TI  - Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 660
EP  - 684
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a2/
LA  - ru
ID  - TVP_2007_52_4_a2
ER  - 
%0 Journal Article
%A M. Ya. Kelbert
%A Yu. M. Sukhov
%T Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 660-684
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a2/
%G ru
%F TVP_2007_52_4_a2
M. Ya. Kelbert; Yu. M. Sukhov. Large-Time Behavior of a Branching Diffusion on a Hyperbolic Space. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 660-684. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a2/

[1] Grigor'yan A., Kelbert M., “Recurrence and transience of branching diffusion processes on Riemannian manifolds”, Ann. Probab., 31:1 (2003), 244–284 | DOI | MR

[2] Karpelevich F. I., Kelbert M. Ya., Suhov Yu. M., “The boundedness of branching Markov processes”, The Dynkin Festschrift. Markov Processes and Their Applications, Progr. Probab., 34, ed. M. Freidlin, Birkhäuser, Boston, 1994, 143–152 | MR | Zbl

[3] Karpelevich F. I., Pechersky E. A., Suhov Yu. M., “A phase transition for hyperbolic branching processes”, Comm. Math. Phys., 195:3 (1998), 627–642 | DOI | MR | Zbl

[4] Kelbert M. Ya., Suhov Yu. M., “Branching diffusions on $H^d$ with variable fission: The Hausdorff dimension of the limiting set”, Teoriya veroyatn. i ee primen., 51:1 (2006), 241–255 | MR

[5] Lalley S., Sellke T., “Hyperbolic branching Brownian motion”, Probab. Theory Relat. Fields, 108:2 (1997), 171–192 | DOI | MR | Zbl

[6] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1966, 804 pp. | MR